Evaluate
\frac{92\sqrt{10}}{15}\approx 19.395302982
Share
Copied to clipboard
\sqrt{529-2\times \frac{23^{2}}{90}\times 13}
Calculate 23 to the power of 2 and get 529.
\sqrt{529-2\times \frac{529}{90}\times 13}
Calculate 23 to the power of 2 and get 529.
\sqrt{529-\frac{2\times 529}{90}\times 13}
Express 2\times \frac{529}{90} as a single fraction.
\sqrt{529-\frac{1058}{90}\times 13}
Multiply 2 and 529 to get 1058.
\sqrt{529-\frac{529}{45}\times 13}
Reduce the fraction \frac{1058}{90} to lowest terms by extracting and canceling out 2.
\sqrt{529-\frac{529\times 13}{45}}
Express \frac{529}{45}\times 13 as a single fraction.
\sqrt{529-\frac{6877}{45}}
Multiply 529 and 13 to get 6877.
\sqrt{\frac{23805}{45}-\frac{6877}{45}}
Convert 529 to fraction \frac{23805}{45}.
\sqrt{\frac{23805-6877}{45}}
Since \frac{23805}{45} and \frac{6877}{45} have the same denominator, subtract them by subtracting their numerators.
\sqrt{\frac{16928}{45}}
Subtract 6877 from 23805 to get 16928.
\frac{\sqrt{16928}}{\sqrt{45}}
Rewrite the square root of the division \sqrt{\frac{16928}{45}} as the division of square roots \frac{\sqrt{16928}}{\sqrt{45}}.
\frac{92\sqrt{2}}{\sqrt{45}}
Factor 16928=92^{2}\times 2. Rewrite the square root of the product \sqrt{92^{2}\times 2} as the product of square roots \sqrt{92^{2}}\sqrt{2}. Take the square root of 92^{2}.
\frac{92\sqrt{2}}{3\sqrt{5}}
Factor 45=3^{2}\times 5. Rewrite the square root of the product \sqrt{3^{2}\times 5} as the product of square roots \sqrt{3^{2}}\sqrt{5}. Take the square root of 3^{2}.
\frac{92\sqrt{2}\sqrt{5}}{3\left(\sqrt{5}\right)^{2}}
Rationalize the denominator of \frac{92\sqrt{2}}{3\sqrt{5}} by multiplying numerator and denominator by \sqrt{5}.
\frac{92\sqrt{2}\sqrt{5}}{3\times 5}
The square of \sqrt{5} is 5.
\frac{92\sqrt{10}}{3\times 5}
To multiply \sqrt{2} and \sqrt{5}, multiply the numbers under the square root.
\frac{92\sqrt{10}}{15}
Multiply 3 and 5 to get 15.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}