Solve for n
n=-\frac{3\sqrt{14}}{503}+\frac{1005}{1006}\approx 0.976689916
Share
Copied to clipboard
\left(n-1\right)\sqrt{2016}=2n-3
Variable n cannot be equal to 1 since division by zero is not defined. Multiply both sides of the equation by n-1.
\left(n-1\right)\times 12\sqrt{14}=2n-3
Factor 2016=12^{2}\times 14. Rewrite the square root of the product \sqrt{12^{2}\times 14} as the product of square roots \sqrt{12^{2}}\sqrt{14}. Take the square root of 12^{2}.
\left(12n-12\right)\sqrt{14}=2n-3
Use the distributive property to multiply n-1 by 12.
12n\sqrt{14}-12\sqrt{14}=2n-3
Use the distributive property to multiply 12n-12 by \sqrt{14}.
12n\sqrt{14}-12\sqrt{14}-2n=-3
Subtract 2n from both sides.
12n\sqrt{14}-2n=-3+12\sqrt{14}
Add 12\sqrt{14} to both sides.
\left(12\sqrt{14}-2\right)n=-3+12\sqrt{14}
Combine all terms containing n.
\left(12\sqrt{14}-2\right)n=12\sqrt{14}-3
The equation is in standard form.
\frac{\left(12\sqrt{14}-2\right)n}{12\sqrt{14}-2}=\frac{12\sqrt{14}-3}{12\sqrt{14}-2}
Divide both sides by 12\sqrt{14}-2.
n=\frac{12\sqrt{14}-3}{12\sqrt{14}-2}
Dividing by 12\sqrt{14}-2 undoes the multiplication by 12\sqrt{14}-2.
n=-\frac{3\sqrt{14}}{503}+\frac{1005}{1006}
Divide -3+12\sqrt{14} by 12\sqrt{14}-2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}