Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\sqrt{2.23\left(\frac{1}{5}+\frac{\left(-2\right)^{2}}{10}\right)}
Subtract 152 from 150 to get -2.
\sqrt{2.23\left(\frac{1}{5}+\frac{4}{10}\right)}
Calculate -2 to the power of 2 and get 4.
\sqrt{2.23\left(\frac{1}{5}+\frac{2}{5}\right)}
Reduce the fraction \frac{4}{10} to lowest terms by extracting and canceling out 2.
\sqrt{2.23\times \frac{3}{5}}
Add \frac{1}{5} and \frac{2}{5} to get \frac{3}{5}.
\sqrt{\frac{669}{500}}
Multiply 2.23 and \frac{3}{5} to get \frac{669}{500}.
\frac{\sqrt{669}}{\sqrt{500}}
Rewrite the square root of the division \sqrt{\frac{669}{500}} as the division of square roots \frac{\sqrt{669}}{\sqrt{500}}.
\frac{\sqrt{669}}{10\sqrt{5}}
Factor 500=10^{2}\times 5. Rewrite the square root of the product \sqrt{10^{2}\times 5} as the product of square roots \sqrt{10^{2}}\sqrt{5}. Take the square root of 10^{2}.
\frac{\sqrt{669}\sqrt{5}}{10\left(\sqrt{5}\right)^{2}}
Rationalize the denominator of \frac{\sqrt{669}}{10\sqrt{5}} by multiplying numerator and denominator by \sqrt{5}.
\frac{\sqrt{669}\sqrt{5}}{10\times 5}
The square of \sqrt{5} is 5.
\frac{\sqrt{3345}}{10\times 5}
To multiply \sqrt{669} and \sqrt{5}, multiply the numbers under the square root.
\frac{\sqrt{3345}}{50}
Multiply 10 and 5 to get 50.