\sqrt { 2.23 ( \frac { 1 } { 5 } + \frac { ( 150 - 152 ) ^ { 2 } } { 10 } } )
Evaluate
\frac{\sqrt{3345}}{50}\approx 1.156719499
Quiz
5 problems similar to:
\sqrt { 2.23 ( \frac { 1 } { 5 } + \frac { ( 150 - 152 ) ^ { 2 } } { 10 } } )
Share
Copied to clipboard
\sqrt{2.23\left(\frac{1}{5}+\frac{\left(-2\right)^{2}}{10}\right)}
Subtract 152 from 150 to get -2.
\sqrt{2.23\left(\frac{1}{5}+\frac{4}{10}\right)}
Calculate -2 to the power of 2 and get 4.
\sqrt{2.23\left(\frac{1}{5}+\frac{2}{5}\right)}
Reduce the fraction \frac{4}{10} to lowest terms by extracting and canceling out 2.
\sqrt{2.23\times \frac{3}{5}}
Add \frac{1}{5} and \frac{2}{5} to get \frac{3}{5}.
\sqrt{\frac{669}{500}}
Multiply 2.23 and \frac{3}{5} to get \frac{669}{500}.
\frac{\sqrt{669}}{\sqrt{500}}
Rewrite the square root of the division \sqrt{\frac{669}{500}} as the division of square roots \frac{\sqrt{669}}{\sqrt{500}}.
\frac{\sqrt{669}}{10\sqrt{5}}
Factor 500=10^{2}\times 5. Rewrite the square root of the product \sqrt{10^{2}\times 5} as the product of square roots \sqrt{10^{2}}\sqrt{5}. Take the square root of 10^{2}.
\frac{\sqrt{669}\sqrt{5}}{10\left(\sqrt{5}\right)^{2}}
Rationalize the denominator of \frac{\sqrt{669}}{10\sqrt{5}} by multiplying numerator and denominator by \sqrt{5}.
\frac{\sqrt{669}\sqrt{5}}{10\times 5}
The square of \sqrt{5} is 5.
\frac{\sqrt{3345}}{10\times 5}
To multiply \sqrt{669} and \sqrt{5}, multiply the numbers under the square root.
\frac{\sqrt{3345}}{50}
Multiply 10 and 5 to get 50.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}