Solve for x
x=114
Graph
Share
Copied to clipboard
\sqrt{2x-3}=4+\sqrt{x+7}
Subtract -\sqrt{x+7} from both sides of the equation.
\left(\sqrt{2x-3}\right)^{2}=\left(4+\sqrt{x+7}\right)^{2}
Square both sides of the equation.
2x-3=\left(4+\sqrt{x+7}\right)^{2}
Calculate \sqrt{2x-3} to the power of 2 and get 2x-3.
2x-3=16+8\sqrt{x+7}+\left(\sqrt{x+7}\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(4+\sqrt{x+7}\right)^{2}.
2x-3=16+8\sqrt{x+7}+x+7
Calculate \sqrt{x+7} to the power of 2 and get x+7.
2x-3=23+8\sqrt{x+7}+x
Add 16 and 7 to get 23.
2x-3-\left(23+x\right)=8\sqrt{x+7}
Subtract 23+x from both sides of the equation.
2x-3-23-x=8\sqrt{x+7}
To find the opposite of 23+x, find the opposite of each term.
2x-26-x=8\sqrt{x+7}
Subtract 23 from -3 to get -26.
x-26=8\sqrt{x+7}
Combine 2x and -x to get x.
\left(x-26\right)^{2}=\left(8\sqrt{x+7}\right)^{2}
Square both sides of the equation.
x^{2}-52x+676=\left(8\sqrt{x+7}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-26\right)^{2}.
x^{2}-52x+676=8^{2}\left(\sqrt{x+7}\right)^{2}
Expand \left(8\sqrt{x+7}\right)^{2}.
x^{2}-52x+676=64\left(\sqrt{x+7}\right)^{2}
Calculate 8 to the power of 2 and get 64.
x^{2}-52x+676=64\left(x+7\right)
Calculate \sqrt{x+7} to the power of 2 and get x+7.
x^{2}-52x+676=64x+448
Use the distributive property to multiply 64 by x+7.
x^{2}-52x+676-64x=448
Subtract 64x from both sides.
x^{2}-116x+676=448
Combine -52x and -64x to get -116x.
x^{2}-116x+676-448=0
Subtract 448 from both sides.
x^{2}-116x+228=0
Subtract 448 from 676 to get 228.
a+b=-116 ab=228
To solve the equation, factor x^{2}-116x+228 using formula x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). To find a and b, set up a system to be solved.
-1,-228 -2,-114 -3,-76 -4,-57 -6,-38 -12,-19
Since ab is positive, a and b have the same sign. Since a+b is negative, a and b are both negative. List all such integer pairs that give product 228.
-1-228=-229 -2-114=-116 -3-76=-79 -4-57=-61 -6-38=-44 -12-19=-31
Calculate the sum for each pair.
a=-114 b=-2
The solution is the pair that gives sum -116.
\left(x-114\right)\left(x-2\right)
Rewrite factored expression \left(x+a\right)\left(x+b\right) using the obtained values.
x=114 x=2
To find equation solutions, solve x-114=0 and x-2=0.
\sqrt{2\times 114-3}-\sqrt{114+7}=4
Substitute 114 for x in the equation \sqrt{2x-3}-\sqrt{x+7}=4.
4=4
Simplify. The value x=114 satisfies the equation.
\sqrt{2\times 2-3}-\sqrt{2+7}=4
Substitute 2 for x in the equation \sqrt{2x-3}-\sqrt{x+7}=4.
-2=4
Simplify. The value x=2 does not satisfy the equation because the left and the right hand side have opposite signs.
\sqrt{2\times 114-3}-\sqrt{114+7}=4
Substitute 114 for x in the equation \sqrt{2x-3}-\sqrt{x+7}=4.
4=4
Simplify. The value x=114 satisfies the equation.
x=114
Equation \sqrt{2x-3}=\sqrt{x+7}+4 has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}