Solve for x (complex solution)
x=\frac{1+\sqrt{15551}i}{5184}\approx 0.000192901+0.024055488i
Graph
Share
Copied to clipboard
\left(\sqrt{2x-3}\right)^{2}=\left(6^{2}x\sqrt{4}\right)^{2}
Square both sides of the equation.
2x-3=\left(6^{2}x\sqrt{4}\right)^{2}
Calculate \sqrt{2x-3} to the power of 2 and get 2x-3.
2x-3=\left(36x\sqrt{4}\right)^{2}
Calculate 6 to the power of 2 and get 36.
2x-3=\left(36x\times 2\right)^{2}
Calculate the square root of 4 and get 2.
2x-3=\left(72x\right)^{2}
Multiply 36 and 2 to get 72.
2x-3=72^{2}x^{2}
Expand \left(72x\right)^{2}.
2x-3=5184x^{2}
Calculate 72 to the power of 2 and get 5184.
2x-3-5184x^{2}=0
Subtract 5184x^{2} from both sides.
-5184x^{2}+2x-3=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-2±\sqrt{2^{2}-4\left(-5184\right)\left(-3\right)}}{2\left(-5184\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -5184 for a, 2 for b, and -3 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-2±\sqrt{4-4\left(-5184\right)\left(-3\right)}}{2\left(-5184\right)}
Square 2.
x=\frac{-2±\sqrt{4+20736\left(-3\right)}}{2\left(-5184\right)}
Multiply -4 times -5184.
x=\frac{-2±\sqrt{4-62208}}{2\left(-5184\right)}
Multiply 20736 times -3.
x=\frac{-2±\sqrt{-62204}}{2\left(-5184\right)}
Add 4 to -62208.
x=\frac{-2±2\sqrt{15551}i}{2\left(-5184\right)}
Take the square root of -62204.
x=\frac{-2±2\sqrt{15551}i}{-10368}
Multiply 2 times -5184.
x=\frac{-2+2\sqrt{15551}i}{-10368}
Now solve the equation x=\frac{-2±2\sqrt{15551}i}{-10368} when ± is plus. Add -2 to 2i\sqrt{15551}.
x=\frac{-\sqrt{15551}i+1}{5184}
Divide -2+2i\sqrt{15551} by -10368.
x=\frac{-2\sqrt{15551}i-2}{-10368}
Now solve the equation x=\frac{-2±2\sqrt{15551}i}{-10368} when ± is minus. Subtract 2i\sqrt{15551} from -2.
x=\frac{1+\sqrt{15551}i}{5184}
Divide -2-2i\sqrt{15551} by -10368.
x=\frac{-\sqrt{15551}i+1}{5184} x=\frac{1+\sqrt{15551}i}{5184}
The equation is now solved.
\sqrt{2\times \frac{-\sqrt{15551}i+1}{5184}-3}=6^{2}\times \frac{-\sqrt{15551}i+1}{5184}\sqrt{4}
Substitute \frac{-\sqrt{15551}i+1}{5184} for x in the equation \sqrt{2x-3}=6^{2}x\sqrt{4}.
-\left(\frac{1}{72}-\frac{1}{72}i\times 15551^{\frac{1}{2}}\right)=-\frac{1}{72}i\times 15551^{\frac{1}{2}}+\frac{1}{72}
Simplify. The value x=\frac{-\sqrt{15551}i+1}{5184} does not satisfy the equation.
\sqrt{2\times \frac{1+\sqrt{15551}i}{5184}-3}=6^{2}\times \frac{1+\sqrt{15551}i}{5184}\sqrt{4}
Substitute \frac{1+\sqrt{15551}i}{5184} for x in the equation \sqrt{2x-3}=6^{2}x\sqrt{4}.
\frac{1}{72}+\frac{1}{72}i\times 15551^{\frac{1}{2}}=\frac{1}{72}+\frac{1}{72}i\times 15551^{\frac{1}{2}}
Simplify. The value x=\frac{1+\sqrt{15551}i}{5184} satisfies the equation.
x=\frac{1+\sqrt{15551}i}{5184}
Equation \sqrt{2x-3}=36\sqrt{4}x has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}