Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\sqrt{2x-3}=14-\sqrt{8x-12}-4
Subtract 4 from both sides of the equation.
\sqrt{2x-3}=10-\sqrt{8x-12}
Subtract 4 from 14 to get 10.
\left(\sqrt{2x-3}\right)^{2}=\left(10-\sqrt{8x-12}\right)^{2}
Square both sides of the equation.
2x-3=\left(10-\sqrt{8x-12}\right)^{2}
Calculate \sqrt{2x-3} to the power of 2 and get 2x-3.
2x-3=100-20\sqrt{8x-12}+\left(\sqrt{8x-12}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(10-\sqrt{8x-12}\right)^{2}.
2x-3=100-20\sqrt{8x-12}+8x-12
Calculate \sqrt{8x-12} to the power of 2 and get 8x-12.
2x-3=88-20\sqrt{8x-12}+8x
Subtract 12 from 100 to get 88.
2x-3-\left(88+8x\right)=-20\sqrt{8x-12}
Subtract 88+8x from both sides of the equation.
2x-3-88-8x=-20\sqrt{8x-12}
To find the opposite of 88+8x, find the opposite of each term.
2x-91-8x=-20\sqrt{8x-12}
Subtract 88 from -3 to get -91.
-6x-91=-20\sqrt{8x-12}
Combine 2x and -8x to get -6x.
\left(-6x-91\right)^{2}=\left(-20\sqrt{8x-12}\right)^{2}
Square both sides of the equation.
36x^{2}+1092x+8281=\left(-20\sqrt{8x-12}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(-6x-91\right)^{2}.
36x^{2}+1092x+8281=\left(-20\right)^{2}\left(\sqrt{8x-12}\right)^{2}
Expand \left(-20\sqrt{8x-12}\right)^{2}.
36x^{2}+1092x+8281=400\left(\sqrt{8x-12}\right)^{2}
Calculate -20 to the power of 2 and get 400.
36x^{2}+1092x+8281=400\left(8x-12\right)
Calculate \sqrt{8x-12} to the power of 2 and get 8x-12.
36x^{2}+1092x+8281=3200x-4800
Use the distributive property to multiply 400 by 8x-12.
36x^{2}+1092x+8281-3200x=-4800
Subtract 3200x from both sides.
36x^{2}-2108x+8281=-4800
Combine 1092x and -3200x to get -2108x.
36x^{2}-2108x+8281+4800=0
Add 4800 to both sides.
36x^{2}-2108x+13081=0
Add 8281 and 4800 to get 13081.
x=\frac{-\left(-2108\right)±\sqrt{\left(-2108\right)^{2}-4\times 36\times 13081}}{2\times 36}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 36 for a, -2108 for b, and 13081 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-2108\right)±\sqrt{4443664-4\times 36\times 13081}}{2\times 36}
Square -2108.
x=\frac{-\left(-2108\right)±\sqrt{4443664-144\times 13081}}{2\times 36}
Multiply -4 times 36.
x=\frac{-\left(-2108\right)±\sqrt{4443664-1883664}}{2\times 36}
Multiply -144 times 13081.
x=\frac{-\left(-2108\right)±\sqrt{2560000}}{2\times 36}
Add 4443664 to -1883664.
x=\frac{-\left(-2108\right)±1600}{2\times 36}
Take the square root of 2560000.
x=\frac{2108±1600}{2\times 36}
The opposite of -2108 is 2108.
x=\frac{2108±1600}{72}
Multiply 2 times 36.
x=\frac{3708}{72}
Now solve the equation x=\frac{2108±1600}{72} when ± is plus. Add 2108 to 1600.
x=\frac{103}{2}
Reduce the fraction \frac{3708}{72} to lowest terms by extracting and canceling out 36.
x=\frac{508}{72}
Now solve the equation x=\frac{2108±1600}{72} when ± is minus. Subtract 1600 from 2108.
x=\frac{127}{18}
Reduce the fraction \frac{508}{72} to lowest terms by extracting and canceling out 4.
x=\frac{103}{2} x=\frac{127}{18}
The equation is now solved.
\sqrt{2\times \frac{103}{2}-3}+4=14-\sqrt{8\times \frac{103}{2}-12}
Substitute \frac{103}{2} for x in the equation \sqrt{2x-3}+4=14-\sqrt{8x-12}.
14=-6
Simplify. The value x=\frac{103}{2} does not satisfy the equation because the left and the right hand side have opposite signs.
\sqrt{2\times \frac{127}{18}-3}+4=14-\sqrt{8\times \frac{127}{18}-12}
Substitute \frac{127}{18} for x in the equation \sqrt{2x-3}+4=14-\sqrt{8x-12}.
\frac{22}{3}=\frac{22}{3}
Simplify. The value x=\frac{127}{18} satisfies the equation.
x=\frac{127}{18}
Equation \sqrt{2x-3}=-\sqrt{8x-12}+10 has a unique solution.