Solve for x (complex solution)
x=2
x=0
Solve for x
x=2
Graph
Share
Copied to clipboard
\left(\sqrt{2x-2}-\sqrt{x-2}\right)^{2}=\left(\sqrt{x}\right)^{2}
Square both sides of the equation.
\left(\sqrt{2x-2}\right)^{2}-2\sqrt{2x-2}\sqrt{x-2}+\left(\sqrt{x-2}\right)^{2}=\left(\sqrt{x}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(\sqrt{2x-2}-\sqrt{x-2}\right)^{2}.
2x-2-2\sqrt{2x-2}\sqrt{x-2}+\left(\sqrt{x-2}\right)^{2}=\left(\sqrt{x}\right)^{2}
Calculate \sqrt{2x-2} to the power of 2 and get 2x-2.
2x-2-2\sqrt{2x-2}\sqrt{x-2}+x-2=\left(\sqrt{x}\right)^{2}
Calculate \sqrt{x-2} to the power of 2 and get x-2.
3x-2-2\sqrt{2x-2}\sqrt{x-2}-2=\left(\sqrt{x}\right)^{2}
Combine 2x and x to get 3x.
3x-4-2\sqrt{2x-2}\sqrt{x-2}=\left(\sqrt{x}\right)^{2}
Subtract 2 from -2 to get -4.
3x-4-2\sqrt{2x-2}\sqrt{x-2}=x
Calculate \sqrt{x} to the power of 2 and get x.
-2\sqrt{2x-2}\sqrt{x-2}=x-\left(3x-4\right)
Subtract 3x-4 from both sides of the equation.
-2\sqrt{2x-2}\sqrt{x-2}=x-3x+4
To find the opposite of 3x-4, find the opposite of each term.
-2\sqrt{2x-2}\sqrt{x-2}=-2x+4
Combine x and -3x to get -2x.
\left(-2\sqrt{2x-2}\sqrt{x-2}\right)^{2}=\left(-2x+4\right)^{2}
Square both sides of the equation.
\left(-2\right)^{2}\left(\sqrt{2x-2}\right)^{2}\left(\sqrt{x-2}\right)^{2}=\left(-2x+4\right)^{2}
Expand \left(-2\sqrt{2x-2}\sqrt{x-2}\right)^{2}.
4\left(\sqrt{2x-2}\right)^{2}\left(\sqrt{x-2}\right)^{2}=\left(-2x+4\right)^{2}
Calculate -2 to the power of 2 and get 4.
4\left(2x-2\right)\left(\sqrt{x-2}\right)^{2}=\left(-2x+4\right)^{2}
Calculate \sqrt{2x-2} to the power of 2 and get 2x-2.
4\left(2x-2\right)\left(x-2\right)=\left(-2x+4\right)^{2}
Calculate \sqrt{x-2} to the power of 2 and get x-2.
\left(8x-8\right)\left(x-2\right)=\left(-2x+4\right)^{2}
Use the distributive property to multiply 4 by 2x-2.
8x^{2}-16x-8x+16=\left(-2x+4\right)^{2}
Apply the distributive property by multiplying each term of 8x-8 by each term of x-2.
8x^{2}-24x+16=\left(-2x+4\right)^{2}
Combine -16x and -8x to get -24x.
8x^{2}-24x+16=4x^{2}-16x+16
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(-2x+4\right)^{2}.
8x^{2}-24x+16-4x^{2}=-16x+16
Subtract 4x^{2} from both sides.
4x^{2}-24x+16=-16x+16
Combine 8x^{2} and -4x^{2} to get 4x^{2}.
4x^{2}-24x+16+16x=16
Add 16x to both sides.
4x^{2}-8x+16=16
Combine -24x and 16x to get -8x.
4x^{2}-8x+16-16=0
Subtract 16 from both sides.
4x^{2}-8x=0
Subtract 16 from 16 to get 0.
x\left(4x-8\right)=0
Factor out x.
x=0 x=2
To find equation solutions, solve x=0 and 4x-8=0.
\sqrt{2\times 0-2}-\sqrt{0-2}=\sqrt{0}
Substitute 0 for x in the equation \sqrt{2x-2}-\sqrt{x-2}=\sqrt{x}.
0=0
Simplify. The value x=0 satisfies the equation.
\sqrt{2\times 2-2}-\sqrt{2-2}=\sqrt{2}
Substitute 2 for x in the equation \sqrt{2x-2}-\sqrt{x-2}=\sqrt{x}.
2^{\frac{1}{2}}=2^{\frac{1}{2}}
Simplify. The value x=2 satisfies the equation.
x=0 x=2
List all solutions of \sqrt{2x-2}-\sqrt{x-2}=\sqrt{x}.
\left(\sqrt{2x-2}-\sqrt{x-2}\right)^{2}=\left(\sqrt{x}\right)^{2}
Square both sides of the equation.
\left(\sqrt{2x-2}\right)^{2}-2\sqrt{2x-2}\sqrt{x-2}+\left(\sqrt{x-2}\right)^{2}=\left(\sqrt{x}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(\sqrt{2x-2}-\sqrt{x-2}\right)^{2}.
2x-2-2\sqrt{2x-2}\sqrt{x-2}+\left(\sqrt{x-2}\right)^{2}=\left(\sqrt{x}\right)^{2}
Calculate \sqrt{2x-2} to the power of 2 and get 2x-2.
2x-2-2\sqrt{2x-2}\sqrt{x-2}+x-2=\left(\sqrt{x}\right)^{2}
Calculate \sqrt{x-2} to the power of 2 and get x-2.
3x-2-2\sqrt{2x-2}\sqrt{x-2}-2=\left(\sqrt{x}\right)^{2}
Combine 2x and x to get 3x.
3x-4-2\sqrt{2x-2}\sqrt{x-2}=\left(\sqrt{x}\right)^{2}
Subtract 2 from -2 to get -4.
3x-4-2\sqrt{2x-2}\sqrt{x-2}=x
Calculate \sqrt{x} to the power of 2 and get x.
-2\sqrt{2x-2}\sqrt{x-2}=x-\left(3x-4\right)
Subtract 3x-4 from both sides of the equation.
-2\sqrt{2x-2}\sqrt{x-2}=x-3x+4
To find the opposite of 3x-4, find the opposite of each term.
-2\sqrt{2x-2}\sqrt{x-2}=-2x+4
Combine x and -3x to get -2x.
\left(-2\sqrt{2x-2}\sqrt{x-2}\right)^{2}=\left(-2x+4\right)^{2}
Square both sides of the equation.
\left(-2\right)^{2}\left(\sqrt{2x-2}\right)^{2}\left(\sqrt{x-2}\right)^{2}=\left(-2x+4\right)^{2}
Expand \left(-2\sqrt{2x-2}\sqrt{x-2}\right)^{2}.
4\left(\sqrt{2x-2}\right)^{2}\left(\sqrt{x-2}\right)^{2}=\left(-2x+4\right)^{2}
Calculate -2 to the power of 2 and get 4.
4\left(2x-2\right)\left(\sqrt{x-2}\right)^{2}=\left(-2x+4\right)^{2}
Calculate \sqrt{2x-2} to the power of 2 and get 2x-2.
4\left(2x-2\right)\left(x-2\right)=\left(-2x+4\right)^{2}
Calculate \sqrt{x-2} to the power of 2 and get x-2.
\left(8x-8\right)\left(x-2\right)=\left(-2x+4\right)^{2}
Use the distributive property to multiply 4 by 2x-2.
8x^{2}-16x-8x+16=\left(-2x+4\right)^{2}
Apply the distributive property by multiplying each term of 8x-8 by each term of x-2.
8x^{2}-24x+16=\left(-2x+4\right)^{2}
Combine -16x and -8x to get -24x.
8x^{2}-24x+16=4x^{2}-16x+16
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(-2x+4\right)^{2}.
8x^{2}-24x+16-4x^{2}=-16x+16
Subtract 4x^{2} from both sides.
4x^{2}-24x+16=-16x+16
Combine 8x^{2} and -4x^{2} to get 4x^{2}.
4x^{2}-24x+16+16x=16
Add 16x to both sides.
4x^{2}-8x+16=16
Combine -24x and 16x to get -8x.
4x^{2}-8x+16-16=0
Subtract 16 from both sides.
4x^{2}-8x=0
Subtract 16 from 16 to get 0.
x\left(4x-8\right)=0
Factor out x.
x=0 x=2
To find equation solutions, solve x=0 and 4x-8=0.
\sqrt{2\times 0-2}-\sqrt{0-2}=\sqrt{0}
Substitute 0 for x in the equation \sqrt{2x-2}-\sqrt{x-2}=\sqrt{x}. The expression \sqrt{2\times 0-2} is undefined because the radicand cannot be negative.
\sqrt{2\times 2-2}-\sqrt{2-2}=\sqrt{2}
Substitute 2 for x in the equation \sqrt{2x-2}-\sqrt{x-2}=\sqrt{x}.
2^{\frac{1}{2}}=2^{\frac{1}{2}}
Simplify. The value x=2 satisfies the equation.
x=2
Equation \sqrt{2x-2}-\sqrt{x-2}=\sqrt{x} has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}