Solve for x (complex solution)
x=-4+3i
x=-4-3i
Graph
Share
Copied to clipboard
\sqrt{2x}=x-4+9
Subtract -9 from both sides of the equation.
\sqrt{2x}=x+5
Add -4 and 9 to get 5.
\left(\sqrt{2x}\right)^{2}=\left(x+5\right)^{2}
Square both sides of the equation.
2x=\left(x+5\right)^{2}
Calculate \sqrt{2x} to the power of 2 and get 2x.
2x=x^{2}+10x+25
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+5\right)^{2}.
2x-x^{2}=10x+25
Subtract x^{2} from both sides.
2x-x^{2}-10x=25
Subtract 10x from both sides.
-8x-x^{2}=25
Combine 2x and -10x to get -8x.
-8x-x^{2}-25=0
Subtract 25 from both sides.
-x^{2}-8x-25=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-8\right)±\sqrt{\left(-8\right)^{2}-4\left(-1\right)\left(-25\right)}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, -8 for b, and -25 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-8\right)±\sqrt{64-4\left(-1\right)\left(-25\right)}}{2\left(-1\right)}
Square -8.
x=\frac{-\left(-8\right)±\sqrt{64+4\left(-25\right)}}{2\left(-1\right)}
Multiply -4 times -1.
x=\frac{-\left(-8\right)±\sqrt{64-100}}{2\left(-1\right)}
Multiply 4 times -25.
x=\frac{-\left(-8\right)±\sqrt{-36}}{2\left(-1\right)}
Add 64 to -100.
x=\frac{-\left(-8\right)±6i}{2\left(-1\right)}
Take the square root of -36.
x=\frac{8±6i}{2\left(-1\right)}
The opposite of -8 is 8.
x=\frac{8±6i}{-2}
Multiply 2 times -1.
x=\frac{8+6i}{-2}
Now solve the equation x=\frac{8±6i}{-2} when ± is plus. Add 8 to 6i.
x=-4-3i
Divide 8+6i by -2.
x=\frac{8-6i}{-2}
Now solve the equation x=\frac{8±6i}{-2} when ± is minus. Subtract 6i from 8.
x=-4+3i
Divide 8-6i by -2.
x=-4-3i x=-4+3i
The equation is now solved.
\sqrt{2\left(-4-3i\right)}-9=-4-3i-4
Substitute -4-3i for x in the equation \sqrt{2x}-9=x-4.
-8-3i=-8-3i
Simplify. The value x=-4-3i satisfies the equation.
\sqrt{2\left(-4+3i\right)}-9=-4+3i-4
Substitute -4+3i for x in the equation \sqrt{2x}-9=x-4.
-8+3i=-8+3i
Simplify. The value x=-4+3i satisfies the equation.
x=-4-3i x=-4+3i
List all solutions of \sqrt{2x}=x+5.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}