Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\sqrt{2x}=5-\left(x-1\right)
Subtract x-1 from both sides of the equation.
\sqrt{2x}=5-x-\left(-1\right)
To find the opposite of x-1, find the opposite of each term.
\sqrt{2x}=5-x+1
The opposite of -1 is 1.
\sqrt{2x}=6-x
Add 5 and 1 to get 6.
\left(\sqrt{2x}\right)^{2}=\left(6-x\right)^{2}
Square both sides of the equation.
2x=\left(6-x\right)^{2}
Calculate \sqrt{2x} to the power of 2 and get 2x.
2x=36-12x+x^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(6-x\right)^{2}.
2x-36=-12x+x^{2}
Subtract 36 from both sides.
2x-36+12x=x^{2}
Add 12x to both sides.
14x-36=x^{2}
Combine 2x and 12x to get 14x.
14x-36-x^{2}=0
Subtract x^{2} from both sides.
-x^{2}+14x-36=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-14±\sqrt{14^{2}-4\left(-1\right)\left(-36\right)}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, 14 for b, and -36 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-14±\sqrt{196-4\left(-1\right)\left(-36\right)}}{2\left(-1\right)}
Square 14.
x=\frac{-14±\sqrt{196+4\left(-36\right)}}{2\left(-1\right)}
Multiply -4 times -1.
x=\frac{-14±\sqrt{196-144}}{2\left(-1\right)}
Multiply 4 times -36.
x=\frac{-14±\sqrt{52}}{2\left(-1\right)}
Add 196 to -144.
x=\frac{-14±2\sqrt{13}}{2\left(-1\right)}
Take the square root of 52.
x=\frac{-14±2\sqrt{13}}{-2}
Multiply 2 times -1.
x=\frac{2\sqrt{13}-14}{-2}
Now solve the equation x=\frac{-14±2\sqrt{13}}{-2} when ± is plus. Add -14 to 2\sqrt{13}.
x=7-\sqrt{13}
Divide -14+2\sqrt{13} by -2.
x=\frac{-2\sqrt{13}-14}{-2}
Now solve the equation x=\frac{-14±2\sqrt{13}}{-2} when ± is minus. Subtract 2\sqrt{13} from -14.
x=\sqrt{13}+7
Divide -14-2\sqrt{13} by -2.
x=7-\sqrt{13} x=\sqrt{13}+7
The equation is now solved.
\sqrt{2\left(7-\sqrt{13}\right)}+7-\sqrt{13}-1=5
Substitute 7-\sqrt{13} for x in the equation \sqrt{2x}+x-1=5.
5=5
Simplify. The value x=7-\sqrt{13} satisfies the equation.
\sqrt{2\left(\sqrt{13}+7\right)}+\sqrt{13}+7-1=5
Substitute \sqrt{13}+7 for x in the equation \sqrt{2x}+x-1=5.
2\times 13^{\frac{1}{2}}+7=5
Simplify. The value x=\sqrt{13}+7 does not satisfy the equation.
x=7-\sqrt{13}
Equation \sqrt{2x}=6-x has a unique solution.