Solve for x
x=4\left(\sqrt{3}+2\right)\approx 14.92820323
Graph
Share
Copied to clipboard
\sqrt{2x}=\frac{1}{2}x-2
Subtract 2 from both sides of the equation.
\left(\sqrt{2x}\right)^{2}=\left(\frac{1}{2}x-2\right)^{2}
Square both sides of the equation.
2x=\left(\frac{1}{2}x-2\right)^{2}
Calculate \sqrt{2x} to the power of 2 and get 2x.
2x=\frac{1}{4}x^{2}-2x+4
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(\frac{1}{2}x-2\right)^{2}.
2x-\frac{1}{4}x^{2}=-2x+4
Subtract \frac{1}{4}x^{2} from both sides.
2x-\frac{1}{4}x^{2}+2x=4
Add 2x to both sides.
4x-\frac{1}{4}x^{2}=4
Combine 2x and 2x to get 4x.
4x-\frac{1}{4}x^{2}-4=0
Subtract 4 from both sides.
-\frac{1}{4}x^{2}+4x-4=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-4±\sqrt{4^{2}-4\left(-\frac{1}{4}\right)\left(-4\right)}}{2\left(-\frac{1}{4}\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -\frac{1}{4} for a, 4 for b, and -4 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-4±\sqrt{16-4\left(-\frac{1}{4}\right)\left(-4\right)}}{2\left(-\frac{1}{4}\right)}
Square 4.
x=\frac{-4±\sqrt{16-4}}{2\left(-\frac{1}{4}\right)}
Multiply -4 times -\frac{1}{4}.
x=\frac{-4±\sqrt{12}}{2\left(-\frac{1}{4}\right)}
Add 16 to -4.
x=\frac{-4±2\sqrt{3}}{2\left(-\frac{1}{4}\right)}
Take the square root of 12.
x=\frac{-4±2\sqrt{3}}{-\frac{1}{2}}
Multiply 2 times -\frac{1}{4}.
x=\frac{2\sqrt{3}-4}{-\frac{1}{2}}
Now solve the equation x=\frac{-4±2\sqrt{3}}{-\frac{1}{2}} when ± is plus. Add -4 to 2\sqrt{3}.
x=8-4\sqrt{3}
Divide -4+2\sqrt{3} by -\frac{1}{2} by multiplying -4+2\sqrt{3} by the reciprocal of -\frac{1}{2}.
x=\frac{-2\sqrt{3}-4}{-\frac{1}{2}}
Now solve the equation x=\frac{-4±2\sqrt{3}}{-\frac{1}{2}} when ± is minus. Subtract 2\sqrt{3} from -4.
x=4\sqrt{3}+8
Divide -4-2\sqrt{3} by -\frac{1}{2} by multiplying -4-2\sqrt{3} by the reciprocal of -\frac{1}{2}.
x=8-4\sqrt{3} x=4\sqrt{3}+8
The equation is now solved.
\sqrt{2\left(8-4\sqrt{3}\right)}+2=\frac{1}{2}\left(8-4\sqrt{3}\right)
Substitute 8-4\sqrt{3} for x in the equation \sqrt{2x}+2=\frac{1}{2}x.
2\times 3^{\frac{1}{2}}=4-2\times 3^{\frac{1}{2}}
Simplify. The value x=8-4\sqrt{3} does not satisfy the equation.
\sqrt{2\left(4\sqrt{3}+8\right)}+2=\frac{1}{2}\left(4\sqrt{3}+8\right)
Substitute 4\sqrt{3}+8 for x in the equation \sqrt{2x}+2=\frac{1}{2}x.
2\times 3^{\frac{1}{2}}+4=2\times 3^{\frac{1}{2}}+4
Simplify. The value x=4\sqrt{3}+8 satisfies the equation.
x=4\sqrt{3}+8
Equation \sqrt{2x}=\frac{x}{2}-2 has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}