Solve for x
x=3
Graph
Share
Copied to clipboard
\sqrt{2x^{2}-9}=x
Subtract -x from both sides of the equation.
\left(\sqrt{2x^{2}-9}\right)^{2}=x^{2}
Square both sides of the equation.
2x^{2}-9=x^{2}
Calculate \sqrt{2x^{2}-9} to the power of 2 and get 2x^{2}-9.
2x^{2}-9-x^{2}=0
Subtract x^{2} from both sides.
x^{2}-9=0
Combine 2x^{2} and -x^{2} to get x^{2}.
\left(x-3\right)\left(x+3\right)=0
Consider x^{2}-9. Rewrite x^{2}-9 as x^{2}-3^{2}. The difference of squares can be factored using the rule: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
x=3 x=-3
To find equation solutions, solve x-3=0 and x+3=0.
\sqrt{2\times 3^{2}-9}-3=0
Substitute 3 for x in the equation \sqrt{2x^{2}-9}-x=0.
0=0
Simplify. The value x=3 satisfies the equation.
\sqrt{2\left(-3\right)^{2}-9}-\left(-3\right)=0
Substitute -3 for x in the equation \sqrt{2x^{2}-9}-x=0.
6=0
Simplify. The value x=-3 does not satisfy the equation.
x=3
Equation \sqrt{2x^{2}-9}=x has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}