Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\left(\sqrt{2x^{2}-5x+12+2x^{2}}\right)^{2}=\left(5x\right)^{2}
Square both sides of the equation.
\left(\sqrt{4x^{2}-5x+12}\right)^{2}=\left(5x\right)^{2}
Combine 2x^{2} and 2x^{2} to get 4x^{2}.
4x^{2}-5x+12=\left(5x\right)^{2}
Calculate \sqrt{4x^{2}-5x+12} to the power of 2 and get 4x^{2}-5x+12.
4x^{2}-5x+12=5^{2}x^{2}
Expand \left(5x\right)^{2}.
4x^{2}-5x+12=25x^{2}
Calculate 5 to the power of 2 and get 25.
4x^{2}-5x+12-25x^{2}=0
Subtract 25x^{2} from both sides.
-21x^{2}-5x+12=0
Combine 4x^{2} and -25x^{2} to get -21x^{2}.
x=\frac{-\left(-5\right)±\sqrt{\left(-5\right)^{2}-4\left(-21\right)\times 12}}{2\left(-21\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -21 for a, -5 for b, and 12 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-5\right)±\sqrt{25-4\left(-21\right)\times 12}}{2\left(-21\right)}
Square -5.
x=\frac{-\left(-5\right)±\sqrt{25+84\times 12}}{2\left(-21\right)}
Multiply -4 times -21.
x=\frac{-\left(-5\right)±\sqrt{25+1008}}{2\left(-21\right)}
Multiply 84 times 12.
x=\frac{-\left(-5\right)±\sqrt{1033}}{2\left(-21\right)}
Add 25 to 1008.
x=\frac{5±\sqrt{1033}}{2\left(-21\right)}
The opposite of -5 is 5.
x=\frac{5±\sqrt{1033}}{-42}
Multiply 2 times -21.
x=\frac{\sqrt{1033}+5}{-42}
Now solve the equation x=\frac{5±\sqrt{1033}}{-42} when ± is plus. Add 5 to \sqrt{1033}.
x=\frac{-\sqrt{1033}-5}{42}
Divide 5+\sqrt{1033} by -42.
x=\frac{5-\sqrt{1033}}{-42}
Now solve the equation x=\frac{5±\sqrt{1033}}{-42} when ± is minus. Subtract \sqrt{1033} from 5.
x=\frac{\sqrt{1033}-5}{42}
Divide 5-\sqrt{1033} by -42.
x=\frac{-\sqrt{1033}-5}{42} x=\frac{\sqrt{1033}-5}{42}
The equation is now solved.
\sqrt{2\times \left(\frac{-\sqrt{1033}-5}{42}\right)^{2}-5\times \frac{-\sqrt{1033}-5}{42}+12+2\times \left(\frac{-\sqrt{1033}-5}{42}\right)^{2}}=5\times \frac{-\sqrt{1033}-5}{42}
Substitute \frac{-\sqrt{1033}-5}{42} for x in the equation \sqrt{2x^{2}-5x+12+2x^{2}}=5x.
\frac{25}{42}+\frac{5}{42}\times 1033^{\frac{1}{2}}=-\frac{5}{42}\times 1033^{\frac{1}{2}}-\frac{25}{42}
Simplify. The value x=\frac{-\sqrt{1033}-5}{42} does not satisfy the equation because the left and the right hand side have opposite signs.
\sqrt{2\times \left(\frac{\sqrt{1033}-5}{42}\right)^{2}-5\times \frac{\sqrt{1033}-5}{42}+12+2\times \left(\frac{\sqrt{1033}-5}{42}\right)^{2}}=5\times \frac{\sqrt{1033}-5}{42}
Substitute \frac{\sqrt{1033}-5}{42} for x in the equation \sqrt{2x^{2}-5x+12+2x^{2}}=5x.
-\left(\frac{25}{42}-\frac{5}{42}\times 1033^{\frac{1}{2}}\right)=\frac{5}{42}\times 1033^{\frac{1}{2}}-\frac{25}{42}
Simplify. The value x=\frac{\sqrt{1033}-5}{42} satisfies the equation.
x=\frac{\sqrt{1033}-5}{42}
Equation \sqrt{2x^{2}+2x^{2}-5x+12}=5x has a unique solution.