Solve for x
x=1
Graph
Share
Copied to clipboard
\sqrt{2x^{2}+7x}=x+2
Subtract -2 from both sides of the equation.
\left(\sqrt{2x^{2}+7x}\right)^{2}=\left(x+2\right)^{2}
Square both sides of the equation.
2x^{2}+7x=\left(x+2\right)^{2}
Calculate \sqrt{2x^{2}+7x} to the power of 2 and get 2x^{2}+7x.
2x^{2}+7x=x^{2}+4x+4
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+2\right)^{2}.
2x^{2}+7x-x^{2}=4x+4
Subtract x^{2} from both sides.
x^{2}+7x=4x+4
Combine 2x^{2} and -x^{2} to get x^{2}.
x^{2}+7x-4x=4
Subtract 4x from both sides.
x^{2}+3x=4
Combine 7x and -4x to get 3x.
x^{2}+3x-4=0
Subtract 4 from both sides.
a+b=3 ab=-4
To solve the equation, factor x^{2}+3x-4 using formula x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). To find a and b, set up a system to be solved.
-1,4 -2,2
Since ab is negative, a and b have the opposite signs. Since a+b is positive, the positive number has greater absolute value than the negative. List all such integer pairs that give product -4.
-1+4=3 -2+2=0
Calculate the sum for each pair.
a=-1 b=4
The solution is the pair that gives sum 3.
\left(x-1\right)\left(x+4\right)
Rewrite factored expression \left(x+a\right)\left(x+b\right) using the obtained values.
x=1 x=-4
To find equation solutions, solve x-1=0 and x+4=0.
\sqrt{2\times 1^{2}+7\times 1}-2=1
Substitute 1 for x in the equation \sqrt{2x^{2}+7x}-2=x.
1=1
Simplify. The value x=1 satisfies the equation.
\sqrt{2\left(-4\right)^{2}+7\left(-4\right)}-2=-4
Substitute -4 for x in the equation \sqrt{2x^{2}+7x}-2=x.
0=-4
Simplify. The value x=-4 does not satisfy the equation.
x=1
Equation \sqrt{2x^{2}+7x}=x+2 has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}