Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\sqrt{2x+7}=x-1-\left(-3x+1\right)
Subtract -3x+1 from both sides of the equation.
\sqrt{2x+7}=x-1-\left(-3x\right)-1
To find the opposite of -3x+1, find the opposite of each term.
\sqrt{2x+7}=x-1+3x-1
The opposite of -3x is 3x.
\sqrt{2x+7}=4x-1-1
Combine x and 3x to get 4x.
\sqrt{2x+7}=4x-2
Subtract 1 from -1 to get -2.
\left(\sqrt{2x+7}\right)^{2}=\left(4x-2\right)^{2}
Square both sides of the equation.
2x+7=\left(4x-2\right)^{2}
Calculate \sqrt{2x+7} to the power of 2 and get 2x+7.
2x+7=16x^{2}-16x+4
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(4x-2\right)^{2}.
2x+7-16x^{2}=-16x+4
Subtract 16x^{2} from both sides.
2x+7-16x^{2}+16x=4
Add 16x to both sides.
18x+7-16x^{2}=4
Combine 2x and 16x to get 18x.
18x+7-16x^{2}-4=0
Subtract 4 from both sides.
18x+3-16x^{2}=0
Subtract 4 from 7 to get 3.
-16x^{2}+18x+3=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-18±\sqrt{18^{2}-4\left(-16\right)\times 3}}{2\left(-16\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -16 for a, 18 for b, and 3 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-18±\sqrt{324-4\left(-16\right)\times 3}}{2\left(-16\right)}
Square 18.
x=\frac{-18±\sqrt{324+64\times 3}}{2\left(-16\right)}
Multiply -4 times -16.
x=\frac{-18±\sqrt{324+192}}{2\left(-16\right)}
Multiply 64 times 3.
x=\frac{-18±\sqrt{516}}{2\left(-16\right)}
Add 324 to 192.
x=\frac{-18±2\sqrt{129}}{2\left(-16\right)}
Take the square root of 516.
x=\frac{-18±2\sqrt{129}}{-32}
Multiply 2 times -16.
x=\frac{2\sqrt{129}-18}{-32}
Now solve the equation x=\frac{-18±2\sqrt{129}}{-32} when ± is plus. Add -18 to 2\sqrt{129}.
x=\frac{9-\sqrt{129}}{16}
Divide -18+2\sqrt{129} by -32.
x=\frac{-2\sqrt{129}-18}{-32}
Now solve the equation x=\frac{-18±2\sqrt{129}}{-32} when ± is minus. Subtract 2\sqrt{129} from -18.
x=\frac{\sqrt{129}+9}{16}
Divide -18-2\sqrt{129} by -32.
x=\frac{9-\sqrt{129}}{16} x=\frac{\sqrt{129}+9}{16}
The equation is now solved.
\sqrt{2\times \frac{9-\sqrt{129}}{16}+7}-3\times \frac{9-\sqrt{129}}{16}+1=\frac{9-\sqrt{129}}{16}-1
Substitute \frac{9-\sqrt{129}}{16} for x in the equation \sqrt{2x+7}-3x+1=x-1.
-\frac{15}{16}+\frac{7}{16}\times 129^{\frac{1}{2}}=-\frac{7}{16}-\frac{1}{16}\times 129^{\frac{1}{2}}
Simplify. The value x=\frac{9-\sqrt{129}}{16} does not satisfy the equation because the left and the right hand side have opposite signs.
\sqrt{2\times \frac{\sqrt{129}+9}{16}+7}-3\times \frac{\sqrt{129}+9}{16}+1=\frac{\sqrt{129}+9}{16}-1
Substitute \frac{\sqrt{129}+9}{16} for x in the equation \sqrt{2x+7}-3x+1=x-1.
-\frac{7}{16}+\frac{1}{16}\times 129^{\frac{1}{2}}=\frac{1}{16}\times 129^{\frac{1}{2}}-\frac{7}{16}
Simplify. The value x=\frac{\sqrt{129}+9}{16} satisfies the equation.
x=\frac{\sqrt{129}+9}{16}
Equation \sqrt{2x+7}=4x-2 has a unique solution.