Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\left(\sqrt{2x+5}\right)^{2}=\left(\sqrt{x+2}+1\right)^{2}
Square both sides of the equation.
2x+5=\left(\sqrt{x+2}+1\right)^{2}
Calculate \sqrt{2x+5} to the power of 2 and get 2x+5.
2x+5=\left(\sqrt{x+2}\right)^{2}+2\sqrt{x+2}+1
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(\sqrt{x+2}+1\right)^{2}.
2x+5=x+2+2\sqrt{x+2}+1
Calculate \sqrt{x+2} to the power of 2 and get x+2.
2x+5=x+3+2\sqrt{x+2}
Add 2 and 1 to get 3.
2x+5-\left(x+3\right)=2\sqrt{x+2}
Subtract x+3 from both sides of the equation.
2x+5-x-3=2\sqrt{x+2}
To find the opposite of x+3, find the opposite of each term.
x+5-3=2\sqrt{x+2}
Combine 2x and -x to get x.
x+2=2\sqrt{x+2}
Subtract 3 from 5 to get 2.
\left(x+2\right)^{2}=\left(2\sqrt{x+2}\right)^{2}
Square both sides of the equation.
x^{2}+4x+4=\left(2\sqrt{x+2}\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+2\right)^{2}.
x^{2}+4x+4=2^{2}\left(\sqrt{x+2}\right)^{2}
Expand \left(2\sqrt{x+2}\right)^{2}.
x^{2}+4x+4=4\left(\sqrt{x+2}\right)^{2}
Calculate 2 to the power of 2 and get 4.
x^{2}+4x+4=4\left(x+2\right)
Calculate \sqrt{x+2} to the power of 2 and get x+2.
x^{2}+4x+4=4x+8
Use the distributive property to multiply 4 by x+2.
x^{2}+4x+4-4x=8
Subtract 4x from both sides.
x^{2}+4=8
Combine 4x and -4x to get 0.
x^{2}+4-8=0
Subtract 8 from both sides.
x^{2}-4=0
Subtract 8 from 4 to get -4.
\left(x-2\right)\left(x+2\right)=0
Consider x^{2}-4. Rewrite x^{2}-4 as x^{2}-2^{2}. The difference of squares can be factored using the rule: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
x=2 x=-2
To find equation solutions, solve x-2=0 and x+2=0.
\sqrt{2\times 2+5}=\sqrt{2+2}+1
Substitute 2 for x in the equation \sqrt{2x+5}=\sqrt{x+2}+1.
3=3
Simplify. The value x=2 satisfies the equation.
\sqrt{2\left(-2\right)+5}=\sqrt{-2+2}+1
Substitute -2 for x in the equation \sqrt{2x+5}=\sqrt{x+2}+1.
1=1
Simplify. The value x=-2 satisfies the equation.
x=2 x=-2
List all solutions of \sqrt{2x+5}=\sqrt{x+2}+1.