Solve for x
x = \frac{7}{2} = 3\frac{1}{2} = 3.5
Graph
Share
Copied to clipboard
\sqrt{2x+3}=\sqrt{3x-8}+\sqrt{x-1}
Subtract -\sqrt{x-1} from both sides of the equation.
\left(\sqrt{2x+3}\right)^{2}=\left(\sqrt{3x-8}+\sqrt{x-1}\right)^{2}
Square both sides of the equation.
2x+3=\left(\sqrt{3x-8}+\sqrt{x-1}\right)^{2}
Calculate \sqrt{2x+3} to the power of 2 and get 2x+3.
2x+3=\left(\sqrt{3x-8}\right)^{2}+2\sqrt{3x-8}\sqrt{x-1}+\left(\sqrt{x-1}\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(\sqrt{3x-8}+\sqrt{x-1}\right)^{2}.
2x+3=3x-8+2\sqrt{3x-8}\sqrt{x-1}+\left(\sqrt{x-1}\right)^{2}
Calculate \sqrt{3x-8} to the power of 2 and get 3x-8.
2x+3=3x-8+2\sqrt{3x-8}\sqrt{x-1}+x-1
Calculate \sqrt{x-1} to the power of 2 and get x-1.
2x+3=4x-8+2\sqrt{3x-8}\sqrt{x-1}-1
Combine 3x and x to get 4x.
2x+3=4x-9+2\sqrt{3x-8}\sqrt{x-1}
Subtract 1 from -8 to get -9.
2x+3-\left(4x-9\right)=2\sqrt{3x-8}\sqrt{x-1}
Subtract 4x-9 from both sides of the equation.
2x+3-4x+9=2\sqrt{3x-8}\sqrt{x-1}
To find the opposite of 4x-9, find the opposite of each term.
-2x+3+9=2\sqrt{3x-8}\sqrt{x-1}
Combine 2x and -4x to get -2x.
-2x+12=2\sqrt{3x-8}\sqrt{x-1}
Add 3 and 9 to get 12.
\left(-2x+12\right)^{2}=\left(2\sqrt{3x-8}\sqrt{x-1}\right)^{2}
Square both sides of the equation.
4x^{2}-48x+144=\left(2\sqrt{3x-8}\sqrt{x-1}\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(-2x+12\right)^{2}.
4x^{2}-48x+144=2^{2}\left(\sqrt{3x-8}\right)^{2}\left(\sqrt{x-1}\right)^{2}
Expand \left(2\sqrt{3x-8}\sqrt{x-1}\right)^{2}.
4x^{2}-48x+144=4\left(\sqrt{3x-8}\right)^{2}\left(\sqrt{x-1}\right)^{2}
Calculate 2 to the power of 2 and get 4.
4x^{2}-48x+144=4\left(3x-8\right)\left(\sqrt{x-1}\right)^{2}
Calculate \sqrt{3x-8} to the power of 2 and get 3x-8.
4x^{2}-48x+144=4\left(3x-8\right)\left(x-1\right)
Calculate \sqrt{x-1} to the power of 2 and get x-1.
4x^{2}-48x+144=\left(12x-32\right)\left(x-1\right)
Use the distributive property to multiply 4 by 3x-8.
4x^{2}-48x+144=12x^{2}-12x-32x+32
Apply the distributive property by multiplying each term of 12x-32 by each term of x-1.
4x^{2}-48x+144=12x^{2}-44x+32
Combine -12x and -32x to get -44x.
4x^{2}-48x+144-12x^{2}=-44x+32
Subtract 12x^{2} from both sides.
-8x^{2}-48x+144=-44x+32
Combine 4x^{2} and -12x^{2} to get -8x^{2}.
-8x^{2}-48x+144+44x=32
Add 44x to both sides.
-8x^{2}-4x+144=32
Combine -48x and 44x to get -4x.
-8x^{2}-4x+144-32=0
Subtract 32 from both sides.
-8x^{2}-4x+112=0
Subtract 32 from 144 to get 112.
-2x^{2}-x+28=0
Divide both sides by 4.
a+b=-1 ab=-2\times 28=-56
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as -2x^{2}+ax+bx+28. To find a and b, set up a system to be solved.
1,-56 2,-28 4,-14 7,-8
Since ab is negative, a and b have the opposite signs. Since a+b is negative, the negative number has greater absolute value than the positive. List all such integer pairs that give product -56.
1-56=-55 2-28=-26 4-14=-10 7-8=-1
Calculate the sum for each pair.
a=7 b=-8
The solution is the pair that gives sum -1.
\left(-2x^{2}+7x\right)+\left(-8x+28\right)
Rewrite -2x^{2}-x+28 as \left(-2x^{2}+7x\right)+\left(-8x+28\right).
-x\left(2x-7\right)-4\left(2x-7\right)
Factor out -x in the first and -4 in the second group.
\left(2x-7\right)\left(-x-4\right)
Factor out common term 2x-7 by using distributive property.
x=\frac{7}{2} x=-4
To find equation solutions, solve 2x-7=0 and -x-4=0.
\sqrt{2\left(-4\right)+3}-\sqrt{-4-1}=\sqrt{3\left(-4\right)-8}
Substitute -4 for x in the equation \sqrt{2x+3}-\sqrt{x-1}=\sqrt{3x-8}. The expression \sqrt{2\left(-4\right)+3} is undefined because the radicand cannot be negative.
\sqrt{2\times \frac{7}{2}+3}-\sqrt{\frac{7}{2}-1}=\sqrt{3\times \frac{7}{2}-8}
Substitute \frac{7}{2} for x in the equation \sqrt{2x+3}-\sqrt{x-1}=\sqrt{3x-8}.
\frac{1}{2}\times 10^{\frac{1}{2}}=\frac{1}{2}\times 10^{\frac{1}{2}}
Simplify. The value x=\frac{7}{2} satisfies the equation.
x=\frac{7}{2}
Equation \sqrt{2x+3}=\sqrt{x-1}+\sqrt{3x-8} has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}