Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\left(\sqrt{2x+14}-\sqrt{x-7}\right)^{2}=\left(\sqrt{x+5}\right)^{2}
Square both sides of the equation.
\left(\sqrt{2x+14}\right)^{2}-2\sqrt{2x+14}\sqrt{x-7}+\left(\sqrt{x-7}\right)^{2}=\left(\sqrt{x+5}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(\sqrt{2x+14}-\sqrt{x-7}\right)^{2}.
2x+14-2\sqrt{2x+14}\sqrt{x-7}+\left(\sqrt{x-7}\right)^{2}=\left(\sqrt{x+5}\right)^{2}
Calculate \sqrt{2x+14} to the power of 2 and get 2x+14.
2x+14-2\sqrt{2x+14}\sqrt{x-7}+x-7=\left(\sqrt{x+5}\right)^{2}
Calculate \sqrt{x-7} to the power of 2 and get x-7.
3x+14-2\sqrt{2x+14}\sqrt{x-7}-7=\left(\sqrt{x+5}\right)^{2}
Combine 2x and x to get 3x.
3x+7-2\sqrt{2x+14}\sqrt{x-7}=\left(\sqrt{x+5}\right)^{2}
Subtract 7 from 14 to get 7.
3x+7-2\sqrt{2x+14}\sqrt{x-7}=x+5
Calculate \sqrt{x+5} to the power of 2 and get x+5.
-2\sqrt{2x+14}\sqrt{x-7}=x+5-\left(3x+7\right)
Subtract 3x+7 from both sides of the equation.
-2\sqrt{2x+14}\sqrt{x-7}=x+5-3x-7
To find the opposite of 3x+7, find the opposite of each term.
-2\sqrt{2x+14}\sqrt{x-7}=-2x+5-7
Combine x and -3x to get -2x.
-2\sqrt{2x+14}\sqrt{x-7}=-2x-2
Subtract 7 from 5 to get -2.
\left(-2\sqrt{2x+14}\sqrt{x-7}\right)^{2}=\left(-2x-2\right)^{2}
Square both sides of the equation.
\left(-2\right)^{2}\left(\sqrt{2x+14}\right)^{2}\left(\sqrt{x-7}\right)^{2}=\left(-2x-2\right)^{2}
Expand \left(-2\sqrt{2x+14}\sqrt{x-7}\right)^{2}.
4\left(\sqrt{2x+14}\right)^{2}\left(\sqrt{x-7}\right)^{2}=\left(-2x-2\right)^{2}
Calculate -2 to the power of 2 and get 4.
4\left(2x+14\right)\left(\sqrt{x-7}\right)^{2}=\left(-2x-2\right)^{2}
Calculate \sqrt{2x+14} to the power of 2 and get 2x+14.
4\left(2x+14\right)\left(x-7\right)=\left(-2x-2\right)^{2}
Calculate \sqrt{x-7} to the power of 2 and get x-7.
\left(8x+56\right)\left(x-7\right)=\left(-2x-2\right)^{2}
Use the distributive property to multiply 4 by 2x+14.
8x^{2}-56x+56x-392=\left(-2x-2\right)^{2}
Apply the distributive property by multiplying each term of 8x+56 by each term of x-7.
8x^{2}-392=\left(-2x-2\right)^{2}
Combine -56x and 56x to get 0.
8x^{2}-392=4x^{2}+8x+4
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(-2x-2\right)^{2}.
8x^{2}-392-4x^{2}=8x+4
Subtract 4x^{2} from both sides.
4x^{2}-392=8x+4
Combine 8x^{2} and -4x^{2} to get 4x^{2}.
4x^{2}-392-8x=4
Subtract 8x from both sides.
4x^{2}-392-8x-4=0
Subtract 4 from both sides.
4x^{2}-396-8x=0
Subtract 4 from -392 to get -396.
x^{2}-99-2x=0
Divide both sides by 4.
x^{2}-2x-99=0
Rearrange the polynomial to put it in standard form. Place the terms in order from highest to lowest power.
a+b=-2 ab=1\left(-99\right)=-99
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as x^{2}+ax+bx-99. To find a and b, set up a system to be solved.
1,-99 3,-33 9,-11
Since ab is negative, a and b have the opposite signs. Since a+b is negative, the negative number has greater absolute value than the positive. List all such integer pairs that give product -99.
1-99=-98 3-33=-30 9-11=-2
Calculate the sum for each pair.
a=-11 b=9
The solution is the pair that gives sum -2.
\left(x^{2}-11x\right)+\left(9x-99\right)
Rewrite x^{2}-2x-99 as \left(x^{2}-11x\right)+\left(9x-99\right).
x\left(x-11\right)+9\left(x-11\right)
Factor out x in the first and 9 in the second group.
\left(x-11\right)\left(x+9\right)
Factor out common term x-11 by using distributive property.
x=11 x=-9
To find equation solutions, solve x-11=0 and x+9=0.
\sqrt{2\left(-9\right)+14}-\sqrt{-9-7}=\sqrt{-9+5}
Substitute -9 for x in the equation \sqrt{2x+14}-\sqrt{x-7}=\sqrt{x+5}. The expression \sqrt{2\left(-9\right)+14} is undefined because the radicand cannot be negative.
\sqrt{2\times 11+14}-\sqrt{11-7}=\sqrt{11+5}
Substitute 11 for x in the equation \sqrt{2x+14}-\sqrt{x-7}=\sqrt{x+5}.
4=4
Simplify. The value x=11 satisfies the equation.
x=11
Equation \sqrt{2x+14}-\sqrt{x-7}=\sqrt{x+5} has a unique solution.