Solve for x
x=73
Graph
Share
Copied to clipboard
\sqrt{2x+1}=2\sqrt{3}+\sqrt{x+2}
Subtract -\sqrt{x+2} from both sides of the equation.
\left(\sqrt{2x+1}\right)^{2}=\left(2\sqrt{3}+\sqrt{x+2}\right)^{2}
Square both sides of the equation.
2x+1=\left(2\sqrt{3}+\sqrt{x+2}\right)^{2}
Calculate \sqrt{2x+1} to the power of 2 and get 2x+1.
2x+1=4\left(\sqrt{3}\right)^{2}+4\sqrt{3}\sqrt{x+2}+\left(\sqrt{x+2}\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(2\sqrt{3}+\sqrt{x+2}\right)^{2}.
2x+1=4\times 3+4\sqrt{3}\sqrt{x+2}+\left(\sqrt{x+2}\right)^{2}
The square of \sqrt{3} is 3.
2x+1=12+4\sqrt{3}\sqrt{x+2}+\left(\sqrt{x+2}\right)^{2}
Multiply 4 and 3 to get 12.
2x+1=12+4\sqrt{3}\sqrt{x+2}+x+2
Calculate \sqrt{x+2} to the power of 2 and get x+2.
2x+1=14+4\sqrt{3}\sqrt{x+2}+x
Add 12 and 2 to get 14.
2x+1-\left(14+x\right)=4\sqrt{3}\sqrt{x+2}
Subtract 14+x from both sides of the equation.
2x+1-14-x=4\sqrt{3}\sqrt{x+2}
To find the opposite of 14+x, find the opposite of each term.
2x-13-x=4\sqrt{3}\sqrt{x+2}
Subtract 14 from 1 to get -13.
x-13=4\sqrt{3}\sqrt{x+2}
Combine 2x and -x to get x.
\left(x-13\right)^{2}=\left(4\sqrt{3}\sqrt{x+2}\right)^{2}
Square both sides of the equation.
x^{2}-26x+169=\left(4\sqrt{3}\sqrt{x+2}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-13\right)^{2}.
x^{2}-26x+169=4^{2}\left(\sqrt{3}\right)^{2}\left(\sqrt{x+2}\right)^{2}
Expand \left(4\sqrt{3}\sqrt{x+2}\right)^{2}.
x^{2}-26x+169=16\left(\sqrt{3}\right)^{2}\left(\sqrt{x+2}\right)^{2}
Calculate 4 to the power of 2 and get 16.
x^{2}-26x+169=16\times 3\left(\sqrt{x+2}\right)^{2}
The square of \sqrt{3} is 3.
x^{2}-26x+169=48\left(\sqrt{x+2}\right)^{2}
Multiply 16 and 3 to get 48.
x^{2}-26x+169=48\left(x+2\right)
Calculate \sqrt{x+2} to the power of 2 and get x+2.
x^{2}-26x+169=48x+96
Use the distributive property to multiply 48 by x+2.
x^{2}-26x+169-48x=96
Subtract 48x from both sides.
x^{2}-74x+169=96
Combine -26x and -48x to get -74x.
x^{2}-74x+169-96=0
Subtract 96 from both sides.
x^{2}-74x+73=0
Subtract 96 from 169 to get 73.
a+b=-74 ab=73
To solve the equation, factor x^{2}-74x+73 using formula x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). To find a and b, set up a system to be solved.
a=-73 b=-1
Since ab is positive, a and b have the same sign. Since a+b is negative, a and b are both negative. The only such pair is the system solution.
\left(x-73\right)\left(x-1\right)
Rewrite factored expression \left(x+a\right)\left(x+b\right) using the obtained values.
x=73 x=1
To find equation solutions, solve x-73=0 and x-1=0.
\sqrt{2\times 73+1}-\sqrt{73+2}=2\sqrt{3}
Substitute 73 for x in the equation \sqrt{2x+1}-\sqrt{x+2}=2\sqrt{3}.
2\times 3^{\frac{1}{2}}=2\times 3^{\frac{1}{2}}
Simplify. The value x=73 satisfies the equation.
\sqrt{2\times 1+1}-\sqrt{1+2}=2\sqrt{3}
Substitute 1 for x in the equation \sqrt{2x+1}-\sqrt{x+2}=2\sqrt{3}.
0=2\times 3^{\frac{1}{2}}
Simplify. The value x=1 does not satisfy the equation.
\sqrt{2\times 73+1}-\sqrt{73+2}=2\sqrt{3}
Substitute 73 for x in the equation \sqrt{2x+1}-\sqrt{x+2}=2\sqrt{3}.
2\times 3^{\frac{1}{2}}=2\times 3^{\frac{1}{2}}
Simplify. The value x=73 satisfies the equation.
x=73
Equation \sqrt{2x+1}=\sqrt{x+2}+2\sqrt{3} has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}