Solve for x
x=26-6\sqrt{17}\approx 1.261366246
Graph
Share
Copied to clipboard
\sqrt{2x+1}=3-\sqrt{x}
Subtract \sqrt{x} from both sides of the equation.
\left(\sqrt{2x+1}\right)^{2}=\left(3-\sqrt{x}\right)^{2}
Square both sides of the equation.
2x+1=\left(3-\sqrt{x}\right)^{2}
Calculate \sqrt{2x+1} to the power of 2 and get 2x+1.
2x+1=9-6\sqrt{x}+\left(\sqrt{x}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(3-\sqrt{x}\right)^{2}.
2x+1=9-6\sqrt{x}+x
Calculate \sqrt{x} to the power of 2 and get x.
2x+1-\left(9+x\right)=-6\sqrt{x}
Subtract 9+x from both sides of the equation.
2x+1-9-x=-6\sqrt{x}
To find the opposite of 9+x, find the opposite of each term.
2x-8-x=-6\sqrt{x}
Subtract 9 from 1 to get -8.
x-8=-6\sqrt{x}
Combine 2x and -x to get x.
\left(x-8\right)^{2}=\left(-6\sqrt{x}\right)^{2}
Square both sides of the equation.
x^{2}-16x+64=\left(-6\sqrt{x}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-8\right)^{2}.
x^{2}-16x+64=\left(-6\right)^{2}\left(\sqrt{x}\right)^{2}
Expand \left(-6\sqrt{x}\right)^{2}.
x^{2}-16x+64=36\left(\sqrt{x}\right)^{2}
Calculate -6 to the power of 2 and get 36.
x^{2}-16x+64=36x
Calculate \sqrt{x} to the power of 2 and get x.
x^{2}-16x+64-36x=0
Subtract 36x from both sides.
x^{2}-52x+64=0
Combine -16x and -36x to get -52x.
x=\frac{-\left(-52\right)±\sqrt{\left(-52\right)^{2}-4\times 64}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -52 for b, and 64 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-52\right)±\sqrt{2704-4\times 64}}{2}
Square -52.
x=\frac{-\left(-52\right)±\sqrt{2704-256}}{2}
Multiply -4 times 64.
x=\frac{-\left(-52\right)±\sqrt{2448}}{2}
Add 2704 to -256.
x=\frac{-\left(-52\right)±12\sqrt{17}}{2}
Take the square root of 2448.
x=\frac{52±12\sqrt{17}}{2}
The opposite of -52 is 52.
x=\frac{12\sqrt{17}+52}{2}
Now solve the equation x=\frac{52±12\sqrt{17}}{2} when ± is plus. Add 52 to 12\sqrt{17}.
x=6\sqrt{17}+26
Divide 52+12\sqrt{17} by 2.
x=\frac{52-12\sqrt{17}}{2}
Now solve the equation x=\frac{52±12\sqrt{17}}{2} when ± is minus. Subtract 12\sqrt{17} from 52.
x=26-6\sqrt{17}
Divide 52-12\sqrt{17} by 2.
x=6\sqrt{17}+26 x=26-6\sqrt{17}
The equation is now solved.
\sqrt{2\left(6\sqrt{17}+26\right)+1}+\sqrt{6\sqrt{17}+26}=3
Substitute 6\sqrt{17}+26 for x in the equation \sqrt{2x+1}+\sqrt{x}=3.
9+2\times 17^{\frac{1}{2}}=3
Simplify. The value x=6\sqrt{17}+26 does not satisfy the equation.
\sqrt{2\left(26-6\sqrt{17}\right)+1}+\sqrt{26-6\sqrt{17}}=3
Substitute 26-6\sqrt{17} for x in the equation \sqrt{2x+1}+\sqrt{x}=3.
3=3
Simplify. The value x=26-6\sqrt{17} satisfies the equation.
x=26-6\sqrt{17}
Equation \sqrt{2x+1}=-\sqrt{x}+3 has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}