Solve for x
x=\frac{\sqrt{2}\left(\sqrt{5}y+16\right)}{2}
Solve for y
y=\frac{\sqrt{5}\left(\sqrt{2}x-16\right)}{5}
Graph
Share
Copied to clipboard
\sqrt{2}x=16+\sqrt{5}y
Add \sqrt{5}y to both sides.
\sqrt{2}x=\sqrt{5}y+16
The equation is in standard form.
\frac{\sqrt{2}x}{\sqrt{2}}=\frac{\sqrt{5}y+16}{\sqrt{2}}
Divide both sides by \sqrt{2}.
x=\frac{\sqrt{5}y+16}{\sqrt{2}}
Dividing by \sqrt{2} undoes the multiplication by \sqrt{2}.
x=\frac{\sqrt{2}\left(\sqrt{5}y+16\right)}{2}
Divide 16+\sqrt{5}y by \sqrt{2}.
-\sqrt{5}y=16-\sqrt{2}x
Subtract \sqrt{2}x from both sides.
\left(-\sqrt{5}\right)y=-\sqrt{2}x+16
The equation is in standard form.
\frac{\left(-\sqrt{5}\right)y}{-\sqrt{5}}=\frac{-\sqrt{2}x+16}{-\sqrt{5}}
Divide both sides by -\sqrt{5}.
y=\frac{-\sqrt{2}x+16}{-\sqrt{5}}
Dividing by -\sqrt{5} undoes the multiplication by -\sqrt{5}.
y=\frac{\sqrt{10}x-16\sqrt{5}}{5}
Divide 16-\sqrt{2}x by -\sqrt{5}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}