Solve for x
x=-\frac{\sqrt{2}\left(a^{2}+5\right)}{7}
Solve for a (complex solution)
a=-\frac{\sqrt{-14\sqrt{2}x-20}}{2}
a=\frac{\sqrt{-14\sqrt{2}x-20}}{2}
Solve for a
a=\frac{\sqrt{-14\sqrt{2}x-20}}{2}
a=-\frac{\sqrt{-14\sqrt{2}x-20}}{2}\text{, }x\leq -\frac{5\sqrt{2}}{7}
Graph
Share
Copied to clipboard
7x+5\sqrt{2}=-\sqrt{2}a^{2}
Subtract \sqrt{2}a^{2} from both sides. Anything subtracted from zero gives its negation.
7x=-\sqrt{2}a^{2}-5\sqrt{2}
Subtract 5\sqrt{2} from both sides.
\frac{7x}{7}=-\frac{\sqrt{2}\left(a^{2}+5\right)}{7}
Divide both sides by 7.
x=-\frac{\sqrt{2}\left(a^{2}+5\right)}{7}
Dividing by 7 undoes the multiplication by 7.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}