Solve for K
K=\frac{-3\sqrt{2}+\sqrt{58}i}{2}\approx -2.121320344+3.807886553i
K=\frac{-\sqrt{58}i-3\sqrt{2}}{2}\approx -2.121320344-3.807886553i
Share
Copied to clipboard
\sqrt{2}K^{2}+6K=-19\sqrt{2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
\sqrt{2}K^{2}+6K-\left(-19\sqrt{2}\right)=-19\sqrt{2}-\left(-19\sqrt{2}\right)
Subtract -19\sqrt{2} from both sides of the equation.
\sqrt{2}K^{2}+6K-\left(-19\sqrt{2}\right)=0
Subtracting -19\sqrt{2} from itself leaves 0.
\sqrt{2}K^{2}+6K+19\sqrt{2}=0
Subtract -19\sqrt{2} from 0.
K=\frac{-6±\sqrt{6^{2}-4\sqrt{2}\times 19\sqrt{2}}}{2\sqrt{2}}
This equation is in standard form: ax^{2}+bx+c=0. Substitute \sqrt{2} for a, 6 for b, and 19\sqrt{2} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
K=\frac{-6±\sqrt{36-4\sqrt{2}\times 19\sqrt{2}}}{2\sqrt{2}}
Square 6.
K=\frac{-6±\sqrt{36+\left(-4\sqrt{2}\right)\times 19\sqrt{2}}}{2\sqrt{2}}
Multiply -4 times \sqrt{2}.
K=\frac{-6±\sqrt{36-152}}{2\sqrt{2}}
Multiply -4\sqrt{2} times 19\sqrt{2}.
K=\frac{-6±\sqrt{-116}}{2\sqrt{2}}
Add 36 to -152.
K=\frac{-6±2\sqrt{29}i}{2\sqrt{2}}
Take the square root of -116.
K=\frac{-6+2\sqrt{29}i}{2\sqrt{2}}
Now solve the equation K=\frac{-6±2\sqrt{29}i}{2\sqrt{2}} when ± is plus. Add -6 to 2i\sqrt{29}.
K=\frac{\sqrt{2}\left(-3+\sqrt{29}i\right)}{2}
Divide -6+2i\sqrt{29} by 2\sqrt{2}.
K=\frac{-2\sqrt{29}i-6}{2\sqrt{2}}
Now solve the equation K=\frac{-6±2\sqrt{29}i}{2\sqrt{2}} when ± is minus. Subtract 2i\sqrt{29} from -6.
K=-\frac{\sqrt{2}\left(3+\sqrt{29}i\right)}{2}
Divide -6-2i\sqrt{29} by 2\sqrt{2}.
K=\frac{\sqrt{2}\left(-3+\sqrt{29}i\right)}{2} K=-\frac{\sqrt{2}\left(3+\sqrt{29}i\right)}{2}
The equation is now solved.
\sqrt{2}K^{2}+6K=-19\sqrt{2}
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{\sqrt{2}K^{2}+6K}{\sqrt{2}}=-\frac{19\sqrt{2}}{\sqrt{2}}
Divide both sides by \sqrt{2}.
K^{2}+\frac{6}{\sqrt{2}}K=-\frac{19\sqrt{2}}{\sqrt{2}}
Dividing by \sqrt{2} undoes the multiplication by \sqrt{2}.
K^{2}+3\sqrt{2}K=-\frac{19\sqrt{2}}{\sqrt{2}}
Divide 6 by \sqrt{2}.
K^{2}+3\sqrt{2}K=-19
Divide -19\sqrt{2} by \sqrt{2}.
K^{2}+3\sqrt{2}K+\left(\frac{3\sqrt{2}}{2}\right)^{2}=-19+\left(\frac{3\sqrt{2}}{2}\right)^{2}
Divide 3\sqrt{2}, the coefficient of the x term, by 2 to get \frac{3\sqrt{2}}{2}. Then add the square of \frac{3\sqrt{2}}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
K^{2}+3\sqrt{2}K+\frac{9}{2}=-19+\frac{9}{2}
Square \frac{3\sqrt{2}}{2}.
K^{2}+3\sqrt{2}K+\frac{9}{2}=-\frac{29}{2}
Add -19 to \frac{9}{2}.
\left(K+\frac{3\sqrt{2}}{2}\right)^{2}=-\frac{29}{2}
Factor K^{2}+3\sqrt{2}K+\frac{9}{2}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(K+\frac{3\sqrt{2}}{2}\right)^{2}}=\sqrt{-\frac{29}{2}}
Take the square root of both sides of the equation.
K+\frac{3\sqrt{2}}{2}=\frac{\sqrt{58}i}{2} K+\frac{3\sqrt{2}}{2}=-\frac{\sqrt{58}i}{2}
Simplify.
K=\frac{-3\sqrt{2}+\sqrt{58}i}{2} K=\frac{-\sqrt{58}i-3\sqrt{2}}{2}
Subtract \frac{3\sqrt{2}}{2} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}