Evaluate
16\sqrt{2}-29\sqrt{10}\approx -69.078635147
Share
Copied to clipboard
\sqrt{2}-2\sqrt{10}+3\sqrt{50}-9\sqrt{90}
Factor 40=2^{2}\times 10. Rewrite the square root of the product \sqrt{2^{2}\times 10} as the product of square roots \sqrt{2^{2}}\sqrt{10}. Take the square root of 2^{2}.
\sqrt{2}-2\sqrt{10}+3\times 5\sqrt{2}-9\sqrt{90}
Factor 50=5^{2}\times 2. Rewrite the square root of the product \sqrt{5^{2}\times 2} as the product of square roots \sqrt{5^{2}}\sqrt{2}. Take the square root of 5^{2}.
\sqrt{2}-2\sqrt{10}+15\sqrt{2}-9\sqrt{90}
Multiply 3 and 5 to get 15.
16\sqrt{2}-2\sqrt{10}-9\sqrt{90}
Combine \sqrt{2} and 15\sqrt{2} to get 16\sqrt{2}.
16\sqrt{2}-2\sqrt{10}-9\times 3\sqrt{10}
Factor 90=3^{2}\times 10. Rewrite the square root of the product \sqrt{3^{2}\times 10} as the product of square roots \sqrt{3^{2}}\sqrt{10}. Take the square root of 3^{2}.
16\sqrt{2}-2\sqrt{10}-27\sqrt{10}
Multiply -9 and 3 to get -27.
16\sqrt{2}-29\sqrt{10}
Combine -2\sqrt{10} and -27\sqrt{10} to get -29\sqrt{10}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}