Solve for x
x=-2\sqrt{2}\approx -2.828427125
Graph
Share
Copied to clipboard
\sqrt{2}x-\sqrt{2}=2\left(x-2\right)+3\sqrt{2}
Use the distributive property to multiply \sqrt{2} by x-1.
\sqrt{2}x-\sqrt{2}=2x-4+3\sqrt{2}
Use the distributive property to multiply 2 by x-2.
\sqrt{2}x-\sqrt{2}-2x=-4+3\sqrt{2}
Subtract 2x from both sides.
\sqrt{2}x-2x=-4+3\sqrt{2}+\sqrt{2}
Add \sqrt{2} to both sides.
\sqrt{2}x-2x=-4+4\sqrt{2}
Combine 3\sqrt{2} and \sqrt{2} to get 4\sqrt{2}.
\left(\sqrt{2}-2\right)x=-4+4\sqrt{2}
Combine all terms containing x.
\left(\sqrt{2}-2\right)x=4\sqrt{2}-4
The equation is in standard form.
\frac{\left(\sqrt{2}-2\right)x}{\sqrt{2}-2}=\frac{4\sqrt{2}-4}{\sqrt{2}-2}
Divide both sides by \sqrt{2}-2.
x=\frac{4\sqrt{2}-4}{\sqrt{2}-2}
Dividing by \sqrt{2}-2 undoes the multiplication by \sqrt{2}-2.
x=-2\sqrt{2}
Divide -4+4\sqrt{2} by \sqrt{2}-2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}