Solve for x
x=2\sqrt{3}\left(\sqrt{6}-2\right)\approx 1.557078144
Graph
Share
Copied to clipboard
\sqrt{2}x-\sqrt{2}\sqrt{3}=\sqrt{3}\left(\sqrt{2}-x\right)
Use the distributive property to multiply \sqrt{2} by x-\sqrt{3}.
\sqrt{2}x-\sqrt{6}=\sqrt{3}\left(\sqrt{2}-x\right)
To multiply \sqrt{2} and \sqrt{3}, multiply the numbers under the square root.
\sqrt{2}x-\sqrt{6}=\sqrt{3}\sqrt{2}-\sqrt{3}x
Use the distributive property to multiply \sqrt{3} by \sqrt{2}-x.
\sqrt{2}x-\sqrt{6}=\sqrt{6}-\sqrt{3}x
To multiply \sqrt{3} and \sqrt{2}, multiply the numbers under the square root.
\sqrt{2}x-\sqrt{6}+\sqrt{3}x=\sqrt{6}
Add \sqrt{3}x to both sides.
\sqrt{2}x+\sqrt{3}x=\sqrt{6}+\sqrt{6}
Add \sqrt{6} to both sides.
\sqrt{2}x+\sqrt{3}x=2\sqrt{6}
Combine \sqrt{6} and \sqrt{6} to get 2\sqrt{6}.
\left(\sqrt{2}+\sqrt{3}\right)x=2\sqrt{6}
Combine all terms containing x.
\frac{\left(\sqrt{2}+\sqrt{3}\right)x}{\sqrt{2}+\sqrt{3}}=\frac{2\sqrt{6}}{\sqrt{2}+\sqrt{3}}
Divide both sides by \sqrt{2}+\sqrt{3}.
x=\frac{2\sqrt{6}}{\sqrt{2}+\sqrt{3}}
Dividing by \sqrt{2}+\sqrt{3} undoes the multiplication by \sqrt{2}+\sqrt{3}.
x=6\sqrt{2}-4\sqrt{3}
Divide 2\sqrt{6} by \sqrt{2}+\sqrt{3}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}