Solve for x
x=24-10\sqrt{6}\approx -0.494897428
Graph
Share
Copied to clipboard
\sqrt{2}x+3\sqrt{2}+\sqrt{3}\left(x-2\right)=2\sqrt{3}-3\sqrt{2}
Use the distributive property to multiply \sqrt{2} by x+3.
\sqrt{2}x+3\sqrt{2}+\sqrt{3}x-2\sqrt{3}=2\sqrt{3}-3\sqrt{2}
Use the distributive property to multiply \sqrt{3} by x-2.
\sqrt{2}x+\sqrt{3}x-2\sqrt{3}=2\sqrt{3}-3\sqrt{2}-3\sqrt{2}
Subtract 3\sqrt{2} from both sides.
\sqrt{2}x+\sqrt{3}x-2\sqrt{3}=2\sqrt{3}-6\sqrt{2}
Combine -3\sqrt{2} and -3\sqrt{2} to get -6\sqrt{2}.
\sqrt{2}x+\sqrt{3}x=2\sqrt{3}-6\sqrt{2}+2\sqrt{3}
Add 2\sqrt{3} to both sides.
\sqrt{2}x+\sqrt{3}x=4\sqrt{3}-6\sqrt{2}
Combine 2\sqrt{3} and 2\sqrt{3} to get 4\sqrt{3}.
\left(\sqrt{2}+\sqrt{3}\right)x=4\sqrt{3}-6\sqrt{2}
Combine all terms containing x.
\frac{\left(\sqrt{2}+\sqrt{3}\right)x}{\sqrt{2}+\sqrt{3}}=\frac{4\sqrt{3}-6\sqrt{2}}{\sqrt{2}+\sqrt{3}}
Divide both sides by \sqrt{2}+\sqrt{3}.
x=\frac{4\sqrt{3}-6\sqrt{2}}{\sqrt{2}+\sqrt{3}}
Dividing by \sqrt{2}+\sqrt{3} undoes the multiplication by \sqrt{2}+\sqrt{3}.
x=24-10\sqrt{6}
Divide 4\sqrt{3}-6\sqrt{2} by \sqrt{2}+\sqrt{3}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}