Solve for x
x=2\sqrt{2}+2\approx 4.828427125
Graph
Share
Copied to clipboard
\sqrt{2}x+\left(\sqrt{2}\right)^{2}=\frac{3x-2}{\sqrt{2}}
Use the distributive property to multiply \sqrt{2} by x+\sqrt{2}.
\sqrt{2}x+2=\frac{3x-2}{\sqrt{2}}
The square of \sqrt{2} is 2.
\sqrt{2}x+2=\frac{\left(3x-2\right)\sqrt{2}}{\left(\sqrt{2}\right)^{2}}
Rationalize the denominator of \frac{3x-2}{\sqrt{2}} by multiplying numerator and denominator by \sqrt{2}.
\sqrt{2}x+2=\frac{\left(3x-2\right)\sqrt{2}}{2}
The square of \sqrt{2} is 2.
\sqrt{2}x+2=\frac{3x\sqrt{2}-2\sqrt{2}}{2}
Use the distributive property to multiply 3x-2 by \sqrt{2}.
\sqrt{2}x+2-\frac{3x\sqrt{2}-2\sqrt{2}}{2}=0
Subtract \frac{3x\sqrt{2}-2\sqrt{2}}{2} from both sides.
\sqrt{2}x-\frac{3x\sqrt{2}-2\sqrt{2}}{2}=-2
Subtract 2 from both sides. Anything subtracted from zero gives its negation.
2\sqrt{2}x-\left(3x\sqrt{2}-2\sqrt{2}\right)=-4
Multiply both sides of the equation by 2.
2\sqrt{2}x-3x\sqrt{2}-\left(-2\sqrt{2}\right)=-4
To find the opposite of 3x\sqrt{2}-2\sqrt{2}, find the opposite of each term.
2\sqrt{2}x-3x\sqrt{2}+2\sqrt{2}=-4
The opposite of -2\sqrt{2} is 2\sqrt{2}.
-\sqrt{2}x+2\sqrt{2}=-4
Combine 2\sqrt{2}x and -3x\sqrt{2} to get -\sqrt{2}x.
-\sqrt{2}x=-4-2\sqrt{2}
Subtract 2\sqrt{2} from both sides.
\left(-\sqrt{2}\right)x=-2\sqrt{2}-4
The equation is in standard form.
\frac{\left(-\sqrt{2}\right)x}{-\sqrt{2}}=\frac{-2\sqrt{2}-4}{-\sqrt{2}}
Divide both sides by -\sqrt{2}.
x=\frac{-2\sqrt{2}-4}{-\sqrt{2}}
Dividing by -\sqrt{2} undoes the multiplication by -\sqrt{2}.
x=2\sqrt{2}+2
Divide -4-2\sqrt{2} by -\sqrt{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}