Solve for x
x=\frac{11-8\sqrt{2}}{7}\approx -0.0448155
Graph
Share
Copied to clipboard
2\sqrt{2}x+3\sqrt{2}-4=x\sqrt{2}\left(1-2\sqrt{2}\right)
Use the distributive property to multiply \sqrt{2} by 2x+3.
2\sqrt{2}x+3\sqrt{2}-4=x\sqrt{2}-2x\left(\sqrt{2}\right)^{2}
Use the distributive property to multiply x\sqrt{2} by 1-2\sqrt{2}.
2\sqrt{2}x+3\sqrt{2}-4=x\sqrt{2}-2x\times 2
The square of \sqrt{2} is 2.
2\sqrt{2}x+3\sqrt{2}-4=x\sqrt{2}-4x
Multiply -2 and 2 to get -4.
2\sqrt{2}x+3\sqrt{2}-4-x\sqrt{2}=-4x
Subtract x\sqrt{2} from both sides.
\sqrt{2}x+3\sqrt{2}-4=-4x
Combine 2\sqrt{2}x and -x\sqrt{2} to get \sqrt{2}x.
\sqrt{2}x+3\sqrt{2}-4+4x=0
Add 4x to both sides.
\sqrt{2}x-4+4x=-3\sqrt{2}
Subtract 3\sqrt{2} from both sides. Anything subtracted from zero gives its negation.
\sqrt{2}x+4x=-3\sqrt{2}+4
Add 4 to both sides.
\left(\sqrt{2}+4\right)x=-3\sqrt{2}+4
Combine all terms containing x.
\left(\sqrt{2}+4\right)x=4-3\sqrt{2}
The equation is in standard form.
\frac{\left(\sqrt{2}+4\right)x}{\sqrt{2}+4}=\frac{4-3\sqrt{2}}{\sqrt{2}+4}
Divide both sides by \sqrt{2}+4.
x=\frac{4-3\sqrt{2}}{\sqrt{2}+4}
Dividing by \sqrt{2}+4 undoes the multiplication by \sqrt{2}+4.
x=\frac{11-8\sqrt{2}}{7}
Divide -3\sqrt{2}+4 by \sqrt{2}+4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}