Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\sqrt{2}\sqrt{3}-\sqrt{2}\sqrt{6}+\left(2\sqrt{3}-\sqrt{2}\right)^{2}
Use the distributive property to multiply \sqrt{2} by \sqrt{3}-\sqrt{6}.
\sqrt{6}-\sqrt{2}\sqrt{6}+\left(2\sqrt{3}-\sqrt{2}\right)^{2}
To multiply \sqrt{2} and \sqrt{3}, multiply the numbers under the square root.
\sqrt{6}-\sqrt{2}\sqrt{2}\sqrt{3}+\left(2\sqrt{3}-\sqrt{2}\right)^{2}
Factor 6=2\times 3. Rewrite the square root of the product \sqrt{2\times 3} as the product of square roots \sqrt{2}\sqrt{3}.
\sqrt{6}-2\sqrt{3}+\left(2\sqrt{3}-\sqrt{2}\right)^{2}
Multiply \sqrt{2} and \sqrt{2} to get 2.
\sqrt{6}-2\sqrt{3}+4\left(\sqrt{3}\right)^{2}-4\sqrt{3}\sqrt{2}+\left(\sqrt{2}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(2\sqrt{3}-\sqrt{2}\right)^{2}.
\sqrt{6}-2\sqrt{3}+4\times 3-4\sqrt{3}\sqrt{2}+\left(\sqrt{2}\right)^{2}
The square of \sqrt{3} is 3.
\sqrt{6}-2\sqrt{3}+12-4\sqrt{3}\sqrt{2}+\left(\sqrt{2}\right)^{2}
Multiply 4 and 3 to get 12.
\sqrt{6}-2\sqrt{3}+12-4\sqrt{6}+\left(\sqrt{2}\right)^{2}
To multiply \sqrt{3} and \sqrt{2}, multiply the numbers under the square root.
\sqrt{6}-2\sqrt{3}+12-4\sqrt{6}+2
The square of \sqrt{2} is 2.
\sqrt{6}-2\sqrt{3}+14-4\sqrt{6}
Add 12 and 2 to get 14.
-3\sqrt{6}-2\sqrt{3}+14
Combine \sqrt{6} and -4\sqrt{6} to get -3\sqrt{6}.