Evaluate
14-2\sqrt{3}-3\sqrt{6}\approx 3.187429157
Share
Copied to clipboard
\sqrt{2}\sqrt{3}-\sqrt{2}\sqrt{6}+\left(2\sqrt{3}-\sqrt{2}\right)^{2}
Use the distributive property to multiply \sqrt{2} by \sqrt{3}-\sqrt{6}.
\sqrt{6}-\sqrt{2}\sqrt{6}+\left(2\sqrt{3}-\sqrt{2}\right)^{2}
To multiply \sqrt{2} and \sqrt{3}, multiply the numbers under the square root.
\sqrt{6}-\sqrt{2}\sqrt{2}\sqrt{3}+\left(2\sqrt{3}-\sqrt{2}\right)^{2}
Factor 6=2\times 3. Rewrite the square root of the product \sqrt{2\times 3} as the product of square roots \sqrt{2}\sqrt{3}.
\sqrt{6}-2\sqrt{3}+\left(2\sqrt{3}-\sqrt{2}\right)^{2}
Multiply \sqrt{2} and \sqrt{2} to get 2.
\sqrt{6}-2\sqrt{3}+4\left(\sqrt{3}\right)^{2}-4\sqrt{3}\sqrt{2}+\left(\sqrt{2}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(2\sqrt{3}-\sqrt{2}\right)^{2}.
\sqrt{6}-2\sqrt{3}+4\times 3-4\sqrt{3}\sqrt{2}+\left(\sqrt{2}\right)^{2}
The square of \sqrt{3} is 3.
\sqrt{6}-2\sqrt{3}+12-4\sqrt{3}\sqrt{2}+\left(\sqrt{2}\right)^{2}
Multiply 4 and 3 to get 12.
\sqrt{6}-2\sqrt{3}+12-4\sqrt{6}+\left(\sqrt{2}\right)^{2}
To multiply \sqrt{3} and \sqrt{2}, multiply the numbers under the square root.
\sqrt{6}-2\sqrt{3}+12-4\sqrt{6}+2
The square of \sqrt{2} is 2.
\sqrt{6}-2\sqrt{3}+14-4\sqrt{6}
Add 12 and 2 to get 14.
-3\sqrt{6}-2\sqrt{3}+14
Combine \sqrt{6} and -4\sqrt{6} to get -3\sqrt{6}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}