Evaluate
\sqrt{2}+1\approx 2.414213562
Factor
\sqrt{2} + 1 = 2.414213562
Share
Copied to clipboard
\sqrt{2}\left(3+\frac{\sqrt{2}}{\left(\sqrt{2}\right)^{2}}\right)-2\sqrt{2}
Rationalize the denominator of \frac{1}{\sqrt{2}} by multiplying numerator and denominator by \sqrt{2}.
\sqrt{2}\left(3+\frac{\sqrt{2}}{2}\right)-2\sqrt{2}
The square of \sqrt{2} is 2.
\sqrt{2}\left(\frac{3\times 2}{2}+\frac{\sqrt{2}}{2}\right)-2\sqrt{2}
To add or subtract expressions, expand them to make their denominators the same. Multiply 3 times \frac{2}{2}.
\sqrt{2}\times \frac{3\times 2+\sqrt{2}}{2}-2\sqrt{2}
Since \frac{3\times 2}{2} and \frac{\sqrt{2}}{2} have the same denominator, add them by adding their numerators.
\sqrt{2}\times \frac{6+\sqrt{2}}{2}-2\sqrt{2}
Do the multiplications in 3\times 2+\sqrt{2}.
\frac{\sqrt{2}\left(6+\sqrt{2}\right)}{2}-2\sqrt{2}
Express \sqrt{2}\times \frac{6+\sqrt{2}}{2} as a single fraction.
\frac{\sqrt{2}\left(6+\sqrt{2}\right)}{2}+\frac{2\left(-2\right)\sqrt{2}}{2}
To add or subtract expressions, expand them to make their denominators the same. Multiply -2\sqrt{2} times \frac{2}{2}.
\frac{\sqrt{2}\left(6+\sqrt{2}\right)+2\left(-2\right)\sqrt{2}}{2}
Since \frac{\sqrt{2}\left(6+\sqrt{2}\right)}{2} and \frac{2\left(-2\right)\sqrt{2}}{2} have the same denominator, add them by adding their numerators.
\frac{6\sqrt{2}+2-4\sqrt{2}}{2}
Do the multiplications in \sqrt{2}\left(6+\sqrt{2}\right)+2\left(-2\right)\sqrt{2}.
\frac{2\sqrt{2}+2}{2}
Do the calculations in 6\sqrt{2}+2-4\sqrt{2}.
\sqrt{2}+1
Divide each term of 2\sqrt{2}+2 by 2 to get \sqrt{2}+1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}