Skip to main content
Evaluate
Tick mark Image

Share

\sqrt{2}\left(\sqrt{3}+1\right)\left(\sqrt{3}+1\right)
Divide \sqrt{2} by \frac{1}{\sqrt{3}+1} by multiplying \sqrt{2} by the reciprocal of \frac{1}{\sqrt{3}+1}.
\left(\sqrt{2}\sqrt{3}+\sqrt{2}\right)\left(\sqrt{3}+1\right)
Use the distributive property to multiply \sqrt{2} by \sqrt{3}+1.
\left(\sqrt{6}+\sqrt{2}\right)\left(\sqrt{3}+1\right)
To multiply \sqrt{2} and \sqrt{3}, multiply the numbers under the square root.
\sqrt{6}\sqrt{3}+\sqrt{6}+\sqrt{2}\sqrt{3}+\sqrt{2}
Apply the distributive property by multiplying each term of \sqrt{6}+\sqrt{2} by each term of \sqrt{3}+1.
\sqrt{3}\sqrt{2}\sqrt{3}+\sqrt{6}+\sqrt{2}\sqrt{3}+\sqrt{2}
Factor 6=3\times 2. Rewrite the square root of the product \sqrt{3\times 2} as the product of square roots \sqrt{3}\sqrt{2}.
3\sqrt{2}+\sqrt{6}+\sqrt{2}\sqrt{3}+\sqrt{2}
Multiply \sqrt{3} and \sqrt{3} to get 3.
3\sqrt{2}+\sqrt{6}+\sqrt{6}+\sqrt{2}
To multiply \sqrt{2} and \sqrt{3}, multiply the numbers under the square root.
3\sqrt{2}+2\sqrt{6}+\sqrt{2}
Combine \sqrt{6} and \sqrt{6} to get 2\sqrt{6}.
4\sqrt{2}+2\sqrt{6}
Combine 3\sqrt{2} and \sqrt{2} to get 4\sqrt{2}.