Evaluate
\frac{\sqrt{7670}}{100000}\approx 0.000875785
Share
Copied to clipboard
\sqrt{2\times 3.835\times 10^{-8}\times 20\times 0.5}
To multiply powers of the same base, add their exponents. Add -5 and -3 to get -8.
\sqrt{7.67\times 10^{-8}\times 20\times 0.5}
Multiply 2 and 3.835 to get 7.67.
\sqrt{7.67\times \frac{1}{100000000}\times 20\times 0.5}
Calculate 10 to the power of -8 and get \frac{1}{100000000}.
\sqrt{\frac{767}{10000000000}\times 20\times 0.5}
Multiply 7.67 and \frac{1}{100000000} to get \frac{767}{10000000000}.
\sqrt{\frac{767}{500000000}\times 0.5}
Multiply \frac{767}{10000000000} and 20 to get \frac{767}{500000000}.
\sqrt{\frac{767}{1000000000}}
Multiply \frac{767}{500000000} and 0.5 to get \frac{767}{1000000000}.
\frac{\sqrt{767}}{\sqrt{1000000000}}
Rewrite the square root of the division \sqrt{\frac{767}{1000000000}} as the division of square roots \frac{\sqrt{767}}{\sqrt{1000000000}}.
\frac{\sqrt{767}}{10000\sqrt{10}}
Factor 1000000000=10000^{2}\times 10. Rewrite the square root of the product \sqrt{10000^{2}\times 10} as the product of square roots \sqrt{10000^{2}}\sqrt{10}. Take the square root of 10000^{2}.
\frac{\sqrt{767}\sqrt{10}}{10000\left(\sqrt{10}\right)^{2}}
Rationalize the denominator of \frac{\sqrt{767}}{10000\sqrt{10}} by multiplying numerator and denominator by \sqrt{10}.
\frac{\sqrt{767}\sqrt{10}}{10000\times 10}
The square of \sqrt{10} is 10.
\frac{\sqrt{7670}}{10000\times 10}
To multiply \sqrt{767} and \sqrt{10}, multiply the numbers under the square root.
\frac{\sqrt{7670}}{100000}
Multiply 10000 and 10 to get 100000.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}