Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Share

\sqrt{2\left(\left(\frac{3}{3}-\frac{2}{3}\right)\left(\frac{3}{14}-\frac{3}{14}+\frac{1}{2}\right)+\frac{1}{\frac{3}{4}-\frac{1}{6}}-\frac{1}{4}\right)}+\frac{8}{21}
Convert 1 to fraction \frac{3}{3}.
\sqrt{2\left(\frac{3-2}{3}\left(\frac{3}{14}-\frac{3}{14}+\frac{1}{2}\right)+\frac{1}{\frac{3}{4}-\frac{1}{6}}-\frac{1}{4}\right)}+\frac{8}{21}
Since \frac{3}{3} and \frac{2}{3} have the same denominator, subtract them by subtracting their numerators.
\sqrt{2\left(\frac{1}{3}\left(\frac{3}{14}-\frac{3}{14}+\frac{1}{2}\right)+\frac{1}{\frac{3}{4}-\frac{1}{6}}-\frac{1}{4}\right)}+\frac{8}{21}
Subtract 2 from 3 to get 1.
\sqrt{2\left(\frac{1}{3}\times \frac{1}{2}+\frac{1}{\frac{3}{4}-\frac{1}{6}}-\frac{1}{4}\right)}+\frac{8}{21}
Subtract \frac{3}{14} from \frac{3}{14} to get 0.
\sqrt{2\left(\frac{1\times 1}{3\times 2}+\frac{1}{\frac{3}{4}-\frac{1}{6}}-\frac{1}{4}\right)}+\frac{8}{21}
Multiply \frac{1}{3} times \frac{1}{2} by multiplying numerator times numerator and denominator times denominator.
\sqrt{2\left(\frac{1}{6}+\frac{1}{\frac{3}{4}-\frac{1}{6}}-\frac{1}{4}\right)}+\frac{8}{21}
Do the multiplications in the fraction \frac{1\times 1}{3\times 2}.
\sqrt{2\left(\frac{1}{6}+\frac{1}{\frac{9}{12}-\frac{2}{12}}-\frac{1}{4}\right)}+\frac{8}{21}
Least common multiple of 4 and 6 is 12. Convert \frac{3}{4} and \frac{1}{6} to fractions with denominator 12.
\sqrt{2\left(\frac{1}{6}+\frac{1}{\frac{9-2}{12}}-\frac{1}{4}\right)}+\frac{8}{21}
Since \frac{9}{12} and \frac{2}{12} have the same denominator, subtract them by subtracting their numerators.
\sqrt{2\left(\frac{1}{6}+\frac{1}{\frac{7}{12}}-\frac{1}{4}\right)}+\frac{8}{21}
Subtract 2 from 9 to get 7.
\sqrt{2\left(\frac{1}{6}+1\times \frac{12}{7}-\frac{1}{4}\right)}+\frac{8}{21}
Divide 1 by \frac{7}{12} by multiplying 1 by the reciprocal of \frac{7}{12}.
\sqrt{2\left(\frac{1}{6}+\frac{12}{7}-\frac{1}{4}\right)}+\frac{8}{21}
Multiply 1 and \frac{12}{7} to get \frac{12}{7}.
\sqrt{2\left(\frac{7}{42}+\frac{72}{42}-\frac{1}{4}\right)}+\frac{8}{21}
Least common multiple of 6 and 7 is 42. Convert \frac{1}{6} and \frac{12}{7} to fractions with denominator 42.
\sqrt{2\left(\frac{7+72}{42}-\frac{1}{4}\right)}+\frac{8}{21}
Since \frac{7}{42} and \frac{72}{42} have the same denominator, add them by adding their numerators.
\sqrt{2\left(\frac{79}{42}-\frac{1}{4}\right)}+\frac{8}{21}
Add 7 and 72 to get 79.
\sqrt{2\left(\frac{158}{84}-\frac{21}{84}\right)}+\frac{8}{21}
Least common multiple of 42 and 4 is 84. Convert \frac{79}{42} and \frac{1}{4} to fractions with denominator 84.
\sqrt{2\times \frac{158-21}{84}}+\frac{8}{21}
Since \frac{158}{84} and \frac{21}{84} have the same denominator, subtract them by subtracting their numerators.
\sqrt{2\times \frac{137}{84}}+\frac{8}{21}
Subtract 21 from 158 to get 137.
\sqrt{\frac{2\times 137}{84}}+\frac{8}{21}
Express 2\times \frac{137}{84} as a single fraction.
\sqrt{\frac{274}{84}}+\frac{8}{21}
Multiply 2 and 137 to get 274.
\sqrt{\frac{137}{42}}+\frac{8}{21}
Reduce the fraction \frac{274}{84} to lowest terms by extracting and canceling out 2.
\frac{\sqrt{137}}{\sqrt{42}}+\frac{8}{21}
Rewrite the square root of the division \sqrt{\frac{137}{42}} as the division of square roots \frac{\sqrt{137}}{\sqrt{42}}.
\frac{\sqrt{137}\sqrt{42}}{\left(\sqrt{42}\right)^{2}}+\frac{8}{21}
Rationalize the denominator of \frac{\sqrt{137}}{\sqrt{42}} by multiplying numerator and denominator by \sqrt{42}.
\frac{\sqrt{137}\sqrt{42}}{42}+\frac{8}{21}
The square of \sqrt{42} is 42.
\frac{\sqrt{5754}}{42}+\frac{8}{21}
To multiply \sqrt{137} and \sqrt{42}, multiply the numbers under the square root.
\frac{\sqrt{5754}}{42}+\frac{8\times 2}{42}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 42 and 21 is 42. Multiply \frac{8}{21} times \frac{2}{2}.
\frac{\sqrt{5754}+8\times 2}{42}
Since \frac{\sqrt{5754}}{42} and \frac{8\times 2}{42} have the same denominator, add them by adding their numerators.
\frac{\sqrt{5754}+16}{42}
Do the multiplications in \sqrt{5754}+8\times 2.