Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\sqrt{\frac{4+1}{2}}-3\sqrt{28}
Multiply 2 and 2 to get 4.
\sqrt{\frac{5}{2}}-3\sqrt{28}
Add 4 and 1 to get 5.
\frac{\sqrt{5}}{\sqrt{2}}-3\sqrt{28}
Rewrite the square root of the division \sqrt{\frac{5}{2}} as the division of square roots \frac{\sqrt{5}}{\sqrt{2}}.
\frac{\sqrt{5}\sqrt{2}}{\left(\sqrt{2}\right)^{2}}-3\sqrt{28}
Rationalize the denominator of \frac{\sqrt{5}}{\sqrt{2}} by multiplying numerator and denominator by \sqrt{2}.
\frac{\sqrt{5}\sqrt{2}}{2}-3\sqrt{28}
The square of \sqrt{2} is 2.
\frac{\sqrt{10}}{2}-3\sqrt{28}
To multiply \sqrt{5} and \sqrt{2}, multiply the numbers under the square root.
\frac{\sqrt{10}}{2}-3\times 2\sqrt{7}
Factor 28=2^{2}\times 7. Rewrite the square root of the product \sqrt{2^{2}\times 7} as the product of square roots \sqrt{2^{2}}\sqrt{7}. Take the square root of 2^{2}.
\frac{\sqrt{10}}{2}-6\sqrt{7}
Multiply -3 and 2 to get -6.
\frac{\sqrt{10}}{2}+\frac{2\left(-6\right)\sqrt{7}}{2}
To add or subtract expressions, expand them to make their denominators the same. Multiply -6\sqrt{7} times \frac{2}{2}.
\frac{\sqrt{10}+2\left(-6\right)\sqrt{7}}{2}
Since \frac{\sqrt{10}}{2} and \frac{2\left(-6\right)\sqrt{7}}{2} have the same denominator, add them by adding their numerators.
\frac{\sqrt{10}-12\sqrt{7}}{2}
Do the multiplications in \sqrt{10}+2\left(-6\right)\sqrt{7}.