Evaluate
-\frac{5\sqrt{210}}{3}\approx -24.152294577
Share
Copied to clipboard
\frac{\sqrt{\frac{4+1}{2}}}{3}\sqrt{28}\left(-5\right)\sqrt{\frac{2\times 2+2}{2}}
Multiply 2 and 2 to get 4.
\frac{\sqrt{\frac{5}{2}}}{3}\sqrt{28}\left(-5\right)\sqrt{\frac{2\times 2+2}{2}}
Add 4 and 1 to get 5.
\frac{\frac{\sqrt{5}}{\sqrt{2}}}{3}\sqrt{28}\left(-5\right)\sqrt{\frac{2\times 2+2}{2}}
Rewrite the square root of the division \sqrt{\frac{5}{2}} as the division of square roots \frac{\sqrt{5}}{\sqrt{2}}.
\frac{\frac{\sqrt{5}\sqrt{2}}{\left(\sqrt{2}\right)^{2}}}{3}\sqrt{28}\left(-5\right)\sqrt{\frac{2\times 2+2}{2}}
Rationalize the denominator of \frac{\sqrt{5}}{\sqrt{2}} by multiplying numerator and denominator by \sqrt{2}.
\frac{\frac{\sqrt{5}\sqrt{2}}{2}}{3}\sqrt{28}\left(-5\right)\sqrt{\frac{2\times 2+2}{2}}
The square of \sqrt{2} is 2.
\frac{\frac{\sqrt{10}}{2}}{3}\sqrt{28}\left(-5\right)\sqrt{\frac{2\times 2+2}{2}}
To multiply \sqrt{5} and \sqrt{2}, multiply the numbers under the square root.
\frac{\sqrt{10}}{2\times 3}\sqrt{28}\left(-5\right)\sqrt{\frac{2\times 2+2}{2}}
Express \frac{\frac{\sqrt{10}}{2}}{3} as a single fraction.
\frac{\sqrt{10}}{6}\sqrt{28}\left(-5\right)\sqrt{\frac{2\times 2+2}{2}}
Multiply 2 and 3 to get 6.
\frac{\sqrt{10}}{6}\times 2\sqrt{7}\left(-5\right)\sqrt{\frac{2\times 2+2}{2}}
Factor 28=2^{2}\times 7. Rewrite the square root of the product \sqrt{2^{2}\times 7} as the product of square roots \sqrt{2^{2}}\sqrt{7}. Take the square root of 2^{2}.
\frac{\sqrt{10}}{6}\left(-10\right)\sqrt{7}\sqrt{\frac{2\times 2+2}{2}}
Multiply 2 and -5 to get -10.
\frac{\sqrt{10}}{6}\left(-10\right)\sqrt{7}\sqrt{\frac{4+2}{2}}
Multiply 2 and 2 to get 4.
\frac{\sqrt{10}}{6}\left(-10\right)\sqrt{7}\sqrt{\frac{6}{2}}
Add 4 and 2 to get 6.
\frac{\sqrt{10}}{6}\left(-10\right)\sqrt{7}\sqrt{3}
Divide 6 by 2 to get 3.
\frac{-\sqrt{10}\times 10}{6}\sqrt{7}\sqrt{3}
Express \frac{\sqrt{10}}{6}\left(-10\right) as a single fraction.
\frac{-\sqrt{10}\times 10\sqrt{7}}{6}\sqrt{3}
Express \frac{-\sqrt{10}\times 10}{6}\sqrt{7} as a single fraction.
\frac{-\sqrt{10}\times 10\sqrt{7}\sqrt{3}}{6}
Express \frac{-\sqrt{10}\times 10\sqrt{7}}{6}\sqrt{3} as a single fraction.
\frac{-10\sqrt{10}\sqrt{7}\sqrt{3}}{6}
Multiply -1 and 10 to get -10.
\frac{-10\sqrt{70}\sqrt{3}}{6}
To multiply \sqrt{10} and \sqrt{7}, multiply the numbers under the square root.
\frac{-10\sqrt{210}}{6}
To multiply \sqrt{70} and \sqrt{3}, multiply the numbers under the square root.
-\frac{5}{3}\sqrt{210}
Divide -10\sqrt{210} by 6 to get -\frac{5}{3}\sqrt{210}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}