Evaluate
-2\sqrt{10}\approx -6.32455532
Share
Copied to clipboard
\frac{\sqrt{\frac{4+1}{2}}}{2}\sqrt{28}\left(-\sqrt{\frac{2\times 7+2}{7}}\right)
Multiply 2 and 2 to get 4.
\frac{\sqrt{\frac{5}{2}}}{2}\sqrt{28}\left(-\sqrt{\frac{2\times 7+2}{7}}\right)
Add 4 and 1 to get 5.
\frac{\frac{\sqrt{5}}{\sqrt{2}}}{2}\sqrt{28}\left(-\sqrt{\frac{2\times 7+2}{7}}\right)
Rewrite the square root of the division \sqrt{\frac{5}{2}} as the division of square roots \frac{\sqrt{5}}{\sqrt{2}}.
\frac{\frac{\sqrt{5}\sqrt{2}}{\left(\sqrt{2}\right)^{2}}}{2}\sqrt{28}\left(-\sqrt{\frac{2\times 7+2}{7}}\right)
Rationalize the denominator of \frac{\sqrt{5}}{\sqrt{2}} by multiplying numerator and denominator by \sqrt{2}.
\frac{\frac{\sqrt{5}\sqrt{2}}{2}}{2}\sqrt{28}\left(-\sqrt{\frac{2\times 7+2}{7}}\right)
The square of \sqrt{2} is 2.
\frac{\frac{\sqrt{10}}{2}}{2}\sqrt{28}\left(-\sqrt{\frac{2\times 7+2}{7}}\right)
To multiply \sqrt{5} and \sqrt{2}, multiply the numbers under the square root.
\frac{\sqrt{10}}{2\times 2}\sqrt{28}\left(-\sqrt{\frac{2\times 7+2}{7}}\right)
Express \frac{\frac{\sqrt{10}}{2}}{2} as a single fraction.
\frac{\sqrt{10}}{4}\sqrt{28}\left(-\sqrt{\frac{2\times 7+2}{7}}\right)
Multiply 2 and 2 to get 4.
\frac{\sqrt{10}}{4}\times 2\sqrt{7}\left(-\sqrt{\frac{2\times 7+2}{7}}\right)
Factor 28=2^{2}\times 7. Rewrite the square root of the product \sqrt{2^{2}\times 7} as the product of square roots \sqrt{2^{2}}\sqrt{7}. Take the square root of 2^{2}.
\frac{\sqrt{10}}{4}\times 2\sqrt{7}\left(-\sqrt{\frac{14+2}{7}}\right)
Multiply 2 and 7 to get 14.
\frac{\sqrt{10}}{4}\times 2\sqrt{7}\left(-\sqrt{\frac{16}{7}}\right)
Add 14 and 2 to get 16.
\frac{\sqrt{10}}{4}\times 2\sqrt{7}\left(-\frac{\sqrt{16}}{\sqrt{7}}\right)
Rewrite the square root of the division \sqrt{\frac{16}{7}} as the division of square roots \frac{\sqrt{16}}{\sqrt{7}}.
\frac{\sqrt{10}}{4}\times 2\sqrt{7}\left(-\frac{4}{\sqrt{7}}\right)
Calculate the square root of 16 and get 4.
\frac{\sqrt{10}}{4}\times 2\sqrt{7}\left(-\frac{4\sqrt{7}}{\left(\sqrt{7}\right)^{2}}\right)
Rationalize the denominator of \frac{4}{\sqrt{7}} by multiplying numerator and denominator by \sqrt{7}.
\frac{\sqrt{10}}{4}\times 2\sqrt{7}\left(-\frac{4\sqrt{7}}{7}\right)
The square of \sqrt{7} is 7.
\frac{\sqrt{10}}{2}\sqrt{7}\left(-\frac{4\sqrt{7}}{7}\right)
Cancel out 4, the greatest common factor in 2 and 4.
\frac{\sqrt{10}\sqrt{7}}{2}\left(-\frac{4\sqrt{7}}{7}\right)
Express \frac{\sqrt{10}}{2}\sqrt{7} as a single fraction.
\frac{-\sqrt{10}\sqrt{7}\times 4\sqrt{7}}{2\times 7}
Multiply \frac{\sqrt{10}\sqrt{7}}{2} times -\frac{4\sqrt{7}}{7} by multiplying numerator times numerator and denominator times denominator.
\frac{-2\sqrt{7}\sqrt{7}\sqrt{10}}{7}
Cancel out 2 in both numerator and denominator.
\frac{-2\times 7\sqrt{10}}{7}
Multiply \sqrt{7} and \sqrt{7} to get 7.
-2\sqrt{10}
Cancel out 7 and 7.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}