Evaluate
\frac{4}{3}\approx 1.333333333
Factor
\frac{2 ^ {2}}{3} = 1\frac{1}{3} = 1.3333333333333333
Quiz
Arithmetic
5 problems similar to:
\sqrt { 2 + \frac { 7 } { 9 } } - \sqrt { 1 - \frac { 8 } { 9 } }
Share
Copied to clipboard
\sqrt{\frac{18}{9}+\frac{7}{9}}-\sqrt{1-\frac{8}{9}}
Convert 2 to fraction \frac{18}{9}.
\sqrt{\frac{18+7}{9}}-\sqrt{1-\frac{8}{9}}
Since \frac{18}{9} and \frac{7}{9} have the same denominator, add them by adding their numerators.
\sqrt{\frac{25}{9}}-\sqrt{1-\frac{8}{9}}
Add 18 and 7 to get 25.
\frac{5}{3}-\sqrt{1-\frac{8}{9}}
Rewrite the square root of the division \frac{25}{9} as the division of square roots \frac{\sqrt{25}}{\sqrt{9}}. Take the square root of both numerator and denominator.
\frac{5}{3}-\sqrt{\frac{9}{9}-\frac{8}{9}}
Convert 1 to fraction \frac{9}{9}.
\frac{5}{3}-\sqrt{\frac{9-8}{9}}
Since \frac{9}{9} and \frac{8}{9} have the same denominator, subtract them by subtracting their numerators.
\frac{5}{3}-\sqrt{\frac{1}{9}}
Subtract 8 from 9 to get 1.
\frac{5}{3}-\frac{1}{3}
Rewrite the square root of the division \frac{1}{9} as the division of square roots \frac{\sqrt{1}}{\sqrt{9}}. Take the square root of both numerator and denominator.
\frac{5-1}{3}
Since \frac{5}{3} and \frac{1}{3} have the same denominator, subtract them by subtracting their numerators.
\frac{4}{3}
Subtract 1 from 5 to get 4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}