Solve for x
x=\frac{4416-150\sqrt{886}}{343}\approx -0.142457201
x = \frac{150 \sqrt{886} + 4416}{343} \approx 25.891728338
Graph
Share
Copied to clipboard
\sqrt{184-56x+2x^{2}}=35-\sqrt{441-42x+2x^{2}}
Subtract \sqrt{441-42x+2x^{2}} from both sides of the equation.
\left(\sqrt{184-56x+2x^{2}}\right)^{2}=\left(35-\sqrt{441-42x+2x^{2}}\right)^{2}
Square both sides of the equation.
184-56x+2x^{2}=\left(35-\sqrt{441-42x+2x^{2}}\right)^{2}
Calculate \sqrt{184-56x+2x^{2}} to the power of 2 and get 184-56x+2x^{2}.
184-56x+2x^{2}=1225-70\sqrt{441-42x+2x^{2}}+\left(\sqrt{441-42x+2x^{2}}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(35-\sqrt{441-42x+2x^{2}}\right)^{2}.
184-56x+2x^{2}=1225-70\sqrt{441-42x+2x^{2}}+441-42x+2x^{2}
Calculate \sqrt{441-42x+2x^{2}} to the power of 2 and get 441-42x+2x^{2}.
184-56x+2x^{2}=1666-70\sqrt{441-42x+2x^{2}}-42x+2x^{2}
Add 1225 and 441 to get 1666.
184-56x+2x^{2}-\left(1666-42x+2x^{2}\right)=-70\sqrt{441-42x+2x^{2}}
Subtract 1666-42x+2x^{2} from both sides of the equation.
184-56x+2x^{2}-1666+42x-2x^{2}=-70\sqrt{441-42x+2x^{2}}
To find the opposite of 1666-42x+2x^{2}, find the opposite of each term.
-1482-56x+2x^{2}+42x-2x^{2}=-70\sqrt{441-42x+2x^{2}}
Subtract 1666 from 184 to get -1482.
-1482-14x+2x^{2}-2x^{2}=-70\sqrt{441-42x+2x^{2}}
Combine -56x and 42x to get -14x.
-1482-14x=-70\sqrt{441-42x+2x^{2}}
Combine 2x^{2} and -2x^{2} to get 0.
\left(-1482-14x\right)^{2}=\left(-70\sqrt{441-42x+2x^{2}}\right)^{2}
Square both sides of the equation.
2196324+41496x+196x^{2}=\left(-70\sqrt{441-42x+2x^{2}}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(-1482-14x\right)^{2}.
2196324+41496x+196x^{2}=\left(-70\right)^{2}\left(\sqrt{441-42x+2x^{2}}\right)^{2}
Expand \left(-70\sqrt{441-42x+2x^{2}}\right)^{2}.
2196324+41496x+196x^{2}=4900\left(\sqrt{441-42x+2x^{2}}\right)^{2}
Calculate -70 to the power of 2 and get 4900.
2196324+41496x+196x^{2}=4900\left(441-42x+2x^{2}\right)
Calculate \sqrt{441-42x+2x^{2}} to the power of 2 and get 441-42x+2x^{2}.
2196324+41496x+196x^{2}=2160900-205800x+9800x^{2}
Use the distributive property to multiply 4900 by 441-42x+2x^{2}.
2196324+41496x+196x^{2}-2160900=-205800x+9800x^{2}
Subtract 2160900 from both sides.
35424+41496x+196x^{2}=-205800x+9800x^{2}
Subtract 2160900 from 2196324 to get 35424.
35424+41496x+196x^{2}+205800x=9800x^{2}
Add 205800x to both sides.
35424+247296x+196x^{2}=9800x^{2}
Combine 41496x and 205800x to get 247296x.
35424+247296x+196x^{2}-9800x^{2}=0
Subtract 9800x^{2} from both sides.
35424+247296x-9604x^{2}=0
Combine 196x^{2} and -9800x^{2} to get -9604x^{2}.
-9604x^{2}+247296x+35424=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-247296±\sqrt{247296^{2}-4\left(-9604\right)\times 35424}}{2\left(-9604\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -9604 for a, 247296 for b, and 35424 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-247296±\sqrt{61155311616-4\left(-9604\right)\times 35424}}{2\left(-9604\right)}
Square 247296.
x=\frac{-247296±\sqrt{61155311616+38416\times 35424}}{2\left(-9604\right)}
Multiply -4 times -9604.
x=\frac{-247296±\sqrt{61155311616+1360848384}}{2\left(-9604\right)}
Multiply 38416 times 35424.
x=\frac{-247296±\sqrt{62516160000}}{2\left(-9604\right)}
Add 61155311616 to 1360848384.
x=\frac{-247296±8400\sqrt{886}}{2\left(-9604\right)}
Take the square root of 62516160000.
x=\frac{-247296±8400\sqrt{886}}{-19208}
Multiply 2 times -9604.
x=\frac{8400\sqrt{886}-247296}{-19208}
Now solve the equation x=\frac{-247296±8400\sqrt{886}}{-19208} when ± is plus. Add -247296 to 8400\sqrt{886}.
x=\frac{4416-150\sqrt{886}}{343}
Divide -247296+8400\sqrt{886} by -19208.
x=\frac{-8400\sqrt{886}-247296}{-19208}
Now solve the equation x=\frac{-247296±8400\sqrt{886}}{-19208} when ± is minus. Subtract 8400\sqrt{886} from -247296.
x=\frac{150\sqrt{886}+4416}{343}
Divide -247296-8400\sqrt{886} by -19208.
x=\frac{4416-150\sqrt{886}}{343} x=\frac{150\sqrt{886}+4416}{343}
The equation is now solved.
\sqrt{184-56\times \frac{4416-150\sqrt{886}}{343}+2\times \left(\frac{4416-150\sqrt{886}}{343}\right)^{2}}+\sqrt{441-42\times \frac{4416-150\sqrt{886}}{343}+2\times \left(\frac{4416-150\sqrt{886}}{343}\right)^{2}}=35
Substitute \frac{4416-150\sqrt{886}}{343} for x in the equation \sqrt{184-56x+2x^{2}}+\sqrt{441-42x+2x^{2}}=35.
\left(\frac{15697000}{117649}+\frac{231600}{117649}\times 886^{\frac{1}{2}}\right)^{\frac{1}{2}}+\frac{8145}{343}-\frac{30}{343}\times 886^{\frac{1}{2}}=35
Simplify. The value x=\frac{4416-150\sqrt{886}}{343} satisfies the equation.
\sqrt{184-56\times \frac{150\sqrt{886}+4416}{343}+2\times \left(\frac{150\sqrt{886}+4416}{343}\right)^{2}}+\sqrt{441-42\times \frac{150\sqrt{886}+4416}{343}+2\times \left(\frac{150\sqrt{886}+4416}{343}\right)^{2}}=35
Substitute \frac{150\sqrt{886}+4416}{343} for x in the equation \sqrt{184-56x+2x^{2}}+\sqrt{441-42x+2x^{2}}=35.
\left(\frac{15697000}{117649}-\frac{231600}{117649}\times 886^{\frac{1}{2}}\right)^{\frac{1}{2}}+\frac{8145}{343}+\frac{30}{343}\times 886^{\frac{1}{2}}=35
Simplify. The value x=\frac{150\sqrt{886}+4416}{343} satisfies the equation.
x=\frac{4416-150\sqrt{886}}{343} x=\frac{150\sqrt{886}+4416}{343}
List all solutions of \sqrt{2x^{2}-56x+184}=-\sqrt{2x^{2}-42x+441}+35.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}