Solve for u
u=\frac{\sqrt{2}\left(x+3\right)-6}{3}
Solve for x
x=\frac{3\sqrt{2}\left(u+2-\sqrt{2}\right)}{2}
Graph
Share
Copied to clipboard
3\sqrt{2}-3u=6-x\sqrt{2}
Factor 18=3^{2}\times 2. Rewrite the square root of the product \sqrt{3^{2}\times 2} as the product of square roots \sqrt{3^{2}}\sqrt{2}. Take the square root of 3^{2}.
-3u=6-x\sqrt{2}-3\sqrt{2}
Subtract 3\sqrt{2} from both sides.
-3u=-\sqrt{2}x-3\sqrt{2}+6
Reorder the terms.
-3u=-\sqrt{2}x+6-3\sqrt{2}
The equation is in standard form.
\frac{-3u}{-3}=\frac{-\sqrt{2}x+6-3\sqrt{2}}{-3}
Divide both sides by -3.
u=\frac{-\sqrt{2}x+6-3\sqrt{2}}{-3}
Dividing by -3 undoes the multiplication by -3.
u=\frac{\sqrt{2}x}{3}+\sqrt{2}-2
Divide -\sqrt{2}x-3\sqrt{2}+6 by -3.
3\sqrt{2}-3u=6-x\sqrt{2}
Factor 18=3^{2}\times 2. Rewrite the square root of the product \sqrt{3^{2}\times 2} as the product of square roots \sqrt{3^{2}}\sqrt{2}. Take the square root of 3^{2}.
6-x\sqrt{2}=3\sqrt{2}-3u
Swap sides so that all variable terms are on the left hand side.
-x\sqrt{2}=3\sqrt{2}-3u-6
Subtract 6 from both sides.
\left(-\sqrt{2}\right)x=-3u+3\sqrt{2}-6
The equation is in standard form.
\frac{\left(-\sqrt{2}\right)x}{-\sqrt{2}}=\frac{-3u+3\sqrt{2}-6}{-\sqrt{2}}
Divide both sides by -\sqrt{2}.
x=\frac{-3u+3\sqrt{2}-6}{-\sqrt{2}}
Dividing by -\sqrt{2} undoes the multiplication by -\sqrt{2}.
x=-\frac{3\sqrt{2}\left(-u+\sqrt{2}-2\right)}{2}
Divide 3\sqrt{2}-3u-6 by -\sqrt{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}