Evaluate
\frac{9\sqrt{2}}{4}-\frac{9\sqrt{3}}{4}+10\sqrt{10}+10\sqrt{15}-4\sqrt{6}-8\approx 51.839517291
Factor
\frac{9 \sqrt{2} + 40 \sqrt{10} + 40 \sqrt{15} - 9 \sqrt{3} - 16 \sqrt{6} - 32}{4} = 51.83951729093474
Share
Copied to clipboard
3\sqrt{2}-\left(\sqrt{8}-\sqrt{125}\right)\times 4\times \frac{1}{2}\left(\sqrt{2}+\sqrt{3}\right)-\frac{3}{4}\left(\sqrt{2}+\sqrt{27}\right)
Factor 18=3^{2}\times 2. Rewrite the square root of the product \sqrt{3^{2}\times 2} as the product of square roots \sqrt{3^{2}}\sqrt{2}. Take the square root of 3^{2}.
3\sqrt{2}-\left(2\sqrt{2}-\sqrt{125}\right)\times 4\times \frac{1}{2}\left(\sqrt{2}+\sqrt{3}\right)-\frac{3}{4}\left(\sqrt{2}+\sqrt{27}\right)
Factor 8=2^{2}\times 2. Rewrite the square root of the product \sqrt{2^{2}\times 2} as the product of square roots \sqrt{2^{2}}\sqrt{2}. Take the square root of 2^{2}.
3\sqrt{2}-\left(2\sqrt{2}-5\sqrt{5}\right)\times 4\times \frac{1}{2}\left(\sqrt{2}+\sqrt{3}\right)-\frac{3}{4}\left(\sqrt{2}+\sqrt{27}\right)
Factor 125=5^{2}\times 5. Rewrite the square root of the product \sqrt{5^{2}\times 5} as the product of square roots \sqrt{5^{2}}\sqrt{5}. Take the square root of 5^{2}.
3\sqrt{2}-\left(2\sqrt{2}-5\sqrt{5}\right)\times \frac{4}{2}\left(\sqrt{2}+\sqrt{3}\right)-\frac{3}{4}\left(\sqrt{2}+\sqrt{27}\right)
Multiply 4 and \frac{1}{2} to get \frac{4}{2}.
3\sqrt{2}-\left(2\sqrt{2}-5\sqrt{5}\right)\times 2\left(\sqrt{2}+\sqrt{3}\right)-\frac{3}{4}\left(\sqrt{2}+\sqrt{27}\right)
Divide 4 by 2 to get 2.
3\sqrt{2}-\left(4\sqrt{2}-10\sqrt{5}\right)\left(\sqrt{2}+\sqrt{3}\right)-\frac{3}{4}\left(\sqrt{2}+\sqrt{27}\right)
Use the distributive property to multiply 2\sqrt{2}-5\sqrt{5} by 2.
3\sqrt{2}-\left(4\left(\sqrt{2}\right)^{2}+4\sqrt{2}\sqrt{3}-10\sqrt{5}\sqrt{2}-10\sqrt{5}\sqrt{3}\right)-\frac{3}{4}\left(\sqrt{2}+\sqrt{27}\right)
Apply the distributive property by multiplying each term of 4\sqrt{2}-10\sqrt{5} by each term of \sqrt{2}+\sqrt{3}.
3\sqrt{2}-\left(4\times 2+4\sqrt{2}\sqrt{3}-10\sqrt{5}\sqrt{2}-10\sqrt{5}\sqrt{3}\right)-\frac{3}{4}\left(\sqrt{2}+\sqrt{27}\right)
The square of \sqrt{2} is 2.
3\sqrt{2}-\left(8+4\sqrt{2}\sqrt{3}-10\sqrt{5}\sqrt{2}-10\sqrt{5}\sqrt{3}\right)-\frac{3}{4}\left(\sqrt{2}+\sqrt{27}\right)
Multiply 4 and 2 to get 8.
3\sqrt{2}-\left(8+4\sqrt{6}-10\sqrt{5}\sqrt{2}-10\sqrt{5}\sqrt{3}\right)-\frac{3}{4}\left(\sqrt{2}+\sqrt{27}\right)
To multiply \sqrt{2} and \sqrt{3}, multiply the numbers under the square root.
3\sqrt{2}-\left(8+4\sqrt{6}-10\sqrt{10}-10\sqrt{5}\sqrt{3}\right)-\frac{3}{4}\left(\sqrt{2}+\sqrt{27}\right)
To multiply \sqrt{5} and \sqrt{2}, multiply the numbers under the square root.
3\sqrt{2}-\left(8+4\sqrt{6}-10\sqrt{10}-10\sqrt{15}\right)-\frac{3}{4}\left(\sqrt{2}+\sqrt{27}\right)
To multiply \sqrt{5} and \sqrt{3}, multiply the numbers under the square root.
3\sqrt{2}-8-4\sqrt{6}-\left(-10\sqrt{10}\right)-\left(-10\sqrt{15}\right)-\frac{3}{4}\left(\sqrt{2}+\sqrt{27}\right)
To find the opposite of 8+4\sqrt{6}-10\sqrt{10}-10\sqrt{15}, find the opposite of each term.
3\sqrt{2}-8-4\sqrt{6}+10\sqrt{10}-\left(-10\sqrt{15}\right)-\frac{3}{4}\left(\sqrt{2}+\sqrt{27}\right)
The opposite of -10\sqrt{10} is 10\sqrt{10}.
3\sqrt{2}-8-4\sqrt{6}+10\sqrt{10}+10\sqrt{15}-\frac{3}{4}\left(\sqrt{2}+\sqrt{27}\right)
The opposite of -10\sqrt{15} is 10\sqrt{15}.
3\sqrt{2}-8-4\sqrt{6}+10\sqrt{10}+10\sqrt{15}-\frac{3}{4}\left(\sqrt{2}+3\sqrt{3}\right)
Factor 27=3^{2}\times 3. Rewrite the square root of the product \sqrt{3^{2}\times 3} as the product of square roots \sqrt{3^{2}}\sqrt{3}. Take the square root of 3^{2}.
3\sqrt{2}-8-4\sqrt{6}+10\sqrt{10}+10\sqrt{15}-\frac{3}{4}\sqrt{2}-\frac{3}{4}\times 3\sqrt{3}
Use the distributive property to multiply -\frac{3}{4} by \sqrt{2}+3\sqrt{3}.
3\sqrt{2}-8-4\sqrt{6}+10\sqrt{10}+10\sqrt{15}-\frac{3}{4}\sqrt{2}+\frac{-3\times 3}{4}\sqrt{3}
Express -\frac{3}{4}\times 3 as a single fraction.
3\sqrt{2}-8-4\sqrt{6}+10\sqrt{10}+10\sqrt{15}-\frac{3}{4}\sqrt{2}+\frac{-9}{4}\sqrt{3}
Multiply -3 and 3 to get -9.
3\sqrt{2}-8-4\sqrt{6}+10\sqrt{10}+10\sqrt{15}-\frac{3}{4}\sqrt{2}-\frac{9}{4}\sqrt{3}
Fraction \frac{-9}{4} can be rewritten as -\frac{9}{4} by extracting the negative sign.
\frac{9}{4}\sqrt{2}-8-4\sqrt{6}+10\sqrt{10}+10\sqrt{15}-\frac{9}{4}\sqrt{3}
Combine 3\sqrt{2} and -\frac{3}{4}\sqrt{2} to get \frac{9}{4}\sqrt{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}