Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

3\sqrt{2}-\sqrt{\frac{9}{2}}-\frac{\sqrt{3}+\sqrt{6}}{\sqrt{3}}+\left(\sqrt{3}-\sqrt{2}\right)^{0}+\sqrt{\left(-\sqrt{2}\right)^{2}}
Factor 18=3^{2}\times 2. Rewrite the square root of the product \sqrt{3^{2}\times 2} as the product of square roots \sqrt{3^{2}}\sqrt{2}. Take the square root of 3^{2}.
3\sqrt{2}-\frac{\sqrt{9}}{\sqrt{2}}-\frac{\sqrt{3}+\sqrt{6}}{\sqrt{3}}+\left(\sqrt{3}-\sqrt{2}\right)^{0}+\sqrt{\left(-\sqrt{2}\right)^{2}}
Rewrite the square root of the division \sqrt{\frac{9}{2}} as the division of square roots \frac{\sqrt{9}}{\sqrt{2}}.
3\sqrt{2}-\frac{3}{\sqrt{2}}-\frac{\sqrt{3}+\sqrt{6}}{\sqrt{3}}+\left(\sqrt{3}-\sqrt{2}\right)^{0}+\sqrt{\left(-\sqrt{2}\right)^{2}}
Calculate the square root of 9 and get 3.
3\sqrt{2}-\frac{3\sqrt{2}}{\left(\sqrt{2}\right)^{2}}-\frac{\sqrt{3}+\sqrt{6}}{\sqrt{3}}+\left(\sqrt{3}-\sqrt{2}\right)^{0}+\sqrt{\left(-\sqrt{2}\right)^{2}}
Rationalize the denominator of \frac{3}{\sqrt{2}} by multiplying numerator and denominator by \sqrt{2}.
3\sqrt{2}-\frac{3\sqrt{2}}{2}-\frac{\sqrt{3}+\sqrt{6}}{\sqrt{3}}+\left(\sqrt{3}-\sqrt{2}\right)^{0}+\sqrt{\left(-\sqrt{2}\right)^{2}}
The square of \sqrt{2} is 2.
3\sqrt{2}-\frac{3\sqrt{2}}{2}-\frac{\left(\sqrt{3}+\sqrt{6}\right)\sqrt{3}}{\left(\sqrt{3}\right)^{2}}+\left(\sqrt{3}-\sqrt{2}\right)^{0}+\sqrt{\left(-\sqrt{2}\right)^{2}}
Rationalize the denominator of \frac{\sqrt{3}+\sqrt{6}}{\sqrt{3}} by multiplying numerator and denominator by \sqrt{3}.
3\sqrt{2}-\frac{3\sqrt{2}}{2}-\frac{\left(\sqrt{3}+\sqrt{6}\right)\sqrt{3}}{3}+\left(\sqrt{3}-\sqrt{2}\right)^{0}+\sqrt{\left(-\sqrt{2}\right)^{2}}
The square of \sqrt{3} is 3.
3\sqrt{2}-\frac{3\sqrt{2}}{2}-\frac{\left(\sqrt{3}+\sqrt{6}\right)\sqrt{3}}{3}+1+\sqrt{\left(-\sqrt{2}\right)^{2}}
Calculate \sqrt{3}-\sqrt{2} to the power of 0 and get 1.
3\sqrt{2}-\frac{3\sqrt{2}}{2}-\frac{\left(\sqrt{3}+\sqrt{6}\right)\sqrt{3}}{3}+1+\sqrt{\left(\sqrt{2}\right)^{2}}
Calculate -\sqrt{2} to the power of 2 and get \left(\sqrt{2}\right)^{2}.
\frac{2\left(3\sqrt{2}+1\right)}{2}-\frac{3\sqrt{2}}{2}-\frac{\left(\sqrt{3}+\sqrt{6}\right)\sqrt{3}}{3}+\sqrt{\left(\sqrt{2}\right)^{2}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 3\sqrt{2}+1 times \frac{2}{2}.
\frac{2\left(3\sqrt{2}+1\right)-3\sqrt{2}}{2}-\frac{\left(\sqrt{3}+\sqrt{6}\right)\sqrt{3}}{3}+\sqrt{\left(\sqrt{2}\right)^{2}}
Since \frac{2\left(3\sqrt{2}+1\right)}{2} and \frac{3\sqrt{2}}{2} have the same denominator, subtract them by subtracting their numerators.
\frac{6\sqrt{2}+2-3\sqrt{2}}{2}-\frac{\left(\sqrt{3}+\sqrt{6}\right)\sqrt{3}}{3}+\sqrt{\left(\sqrt{2}\right)^{2}}
Do the multiplications in 2\left(3\sqrt{2}+1\right)-3\sqrt{2}.
\frac{3\sqrt{2}+2}{2}-\frac{\left(\sqrt{3}+\sqrt{6}\right)\sqrt{3}}{3}+\sqrt{\left(\sqrt{2}\right)^{2}}
Do the calculations in 6\sqrt{2}+2-3\sqrt{2}.
\frac{3\left(3\sqrt{2}+2\right)}{6}-\frac{2\left(\sqrt{3}+\sqrt{6}\right)\sqrt{3}}{6}+\sqrt{\left(\sqrt{2}\right)^{2}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 2 and 3 is 6. Multiply \frac{3\sqrt{2}+2}{2} times \frac{3}{3}. Multiply \frac{\left(\sqrt{3}+\sqrt{6}\right)\sqrt{3}}{3} times \frac{2}{2}.
\frac{3\left(3\sqrt{2}+2\right)-2\left(\sqrt{3}+\sqrt{6}\right)\sqrt{3}}{6}+\sqrt{\left(\sqrt{2}\right)^{2}}
Since \frac{3\left(3\sqrt{2}+2\right)}{6} and \frac{2\left(\sqrt{3}+\sqrt{6}\right)\sqrt{3}}{6} have the same denominator, subtract them by subtracting their numerators.
\frac{9\sqrt{2}+6-6-6\sqrt{2}}{6}+\sqrt{\left(\sqrt{2}\right)^{2}}
Do the multiplications in 3\left(3\sqrt{2}+2\right)-2\left(\sqrt{3}+\sqrt{6}\right)\sqrt{3}.
\frac{3\sqrt{2}}{6}+\sqrt{\left(\sqrt{2}\right)^{2}}
Do the calculations in 9\sqrt{2}+6-6-6\sqrt{2}.
3\sqrt{2}-\frac{3\sqrt{2}}{2}-\frac{\left(\sqrt{3}\right)^{2}+\sqrt{6}\sqrt{3}}{3}+1+\sqrt{\left(\sqrt{2}\right)^{2}}
Use the distributive property to multiply \sqrt{3}+\sqrt{6} by \sqrt{3}.
3\sqrt{2}-\frac{3\sqrt{2}}{2}-\frac{3+\sqrt{6}\sqrt{3}}{3}+1+\sqrt{\left(\sqrt{2}\right)^{2}}
The square of \sqrt{3} is 3.
3\sqrt{2}-\frac{3\sqrt{2}}{2}-\frac{3+\sqrt{3}\sqrt{2}\sqrt{3}}{3}+1+\sqrt{\left(\sqrt{2}\right)^{2}}
Factor 6=3\times 2. Rewrite the square root of the product \sqrt{3\times 2} as the product of square roots \sqrt{3}\sqrt{2}.
3\sqrt{2}-\frac{3\sqrt{2}}{2}-\frac{3+3\sqrt{2}}{3}+1+\sqrt{\left(\sqrt{2}\right)^{2}}
Multiply \sqrt{3} and \sqrt{3} to get 3.
3\sqrt{2}-\frac{3\sqrt{2}}{2}-\left(1+\sqrt{2}\right)+1+\sqrt{\left(\sqrt{2}\right)^{2}}
Divide each term of 3+3\sqrt{2} by 3 to get 1+\sqrt{2}.
3\sqrt{2}-\frac{3\sqrt{2}}{2}-1-\sqrt{2}+1+\sqrt{\left(\sqrt{2}\right)^{2}}
To find the opposite of 1+\sqrt{2}, find the opposite of each term.
2\sqrt{2}-\frac{3\sqrt{2}}{2}-1+1+\sqrt{\left(\sqrt{2}\right)^{2}}
Combine 3\sqrt{2} and -\sqrt{2} to get 2\sqrt{2}.
2\sqrt{2}-\frac{3\sqrt{2}}{2}+\sqrt{\left(\sqrt{2}\right)^{2}}
Add -1 and 1 to get 0.
\frac{2\times 2\sqrt{2}}{2}-\frac{3\sqrt{2}}{2}+\sqrt{\left(\sqrt{2}\right)^{2}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 2\sqrt{2} times \frac{2}{2}.
\frac{2\times 2\sqrt{2}-3\sqrt{2}}{2}+\sqrt{\left(\sqrt{2}\right)^{2}}
Since \frac{2\times 2\sqrt{2}}{2} and \frac{3\sqrt{2}}{2} have the same denominator, subtract them by subtracting their numerators.
\frac{4\sqrt{2}-3\sqrt{2}}{2}+\sqrt{\left(\sqrt{2}\right)^{2}}
Do the multiplications in 2\times 2\sqrt{2}-3\sqrt{2}.
\frac{\sqrt{2}}{2}+\sqrt{\left(\sqrt{2}\right)^{2}}
Do the calculations in 4\sqrt{2}-3\sqrt{2}.
2\sqrt{2}-\frac{3\sqrt{2}}{2}+\sqrt{2}
The square of \sqrt{2} is 2.
3\sqrt{2}-\frac{3\sqrt{2}}{2}
Combine 2\sqrt{2} and \sqrt{2} to get 3\sqrt{2}.
\frac{2\times 3\sqrt{2}}{2}-\frac{3\sqrt{2}}{2}
To add or subtract expressions, expand them to make their denominators the same. Multiply 3\sqrt{2} times \frac{2}{2}.
\frac{2\times 3\sqrt{2}-3\sqrt{2}}{2}
Since \frac{2\times 3\sqrt{2}}{2} and \frac{3\sqrt{2}}{2} have the same denominator, subtract them by subtracting their numerators.
\frac{6\sqrt{2}-3\sqrt{2}}{2}
Do the multiplications in 2\times 3\sqrt{2}-3\sqrt{2}.
\frac{3\sqrt{2}}{2}
Do the calculations in 6\sqrt{2}-3\sqrt{2}.