Evaluate
\frac{3\sqrt{2}}{2}\approx 2.121320344
Share
Copied to clipboard
\sqrt{18}-\frac{\sqrt{\frac{1}{2}}}{\sqrt{\frac{1\times 3+1}{3}}}\times \frac{\frac{6}{\sqrt{3}}}{1}
Divide 6 by 6 to get 1.
3\sqrt{2}-\frac{\sqrt{\frac{1}{2}}}{\sqrt{\frac{1\times 3+1}{3}}}\times \frac{\frac{6}{\sqrt{3}}}{1}
Factor 18=3^{2}\times 2. Rewrite the square root of the product \sqrt{3^{2}\times 2} as the product of square roots \sqrt{3^{2}}\sqrt{2}. Take the square root of 3^{2}.
3\sqrt{2}-\frac{\frac{\sqrt{1}}{\sqrt{2}}}{\sqrt{\frac{1\times 3+1}{3}}}\times \frac{\frac{6}{\sqrt{3}}}{1}
Rewrite the square root of the division \sqrt{\frac{1}{2}} as the division of square roots \frac{\sqrt{1}}{\sqrt{2}}.
3\sqrt{2}-\frac{\frac{1}{\sqrt{2}}}{\sqrt{\frac{1\times 3+1}{3}}}\times \frac{\frac{6}{\sqrt{3}}}{1}
Calculate the square root of 1 and get 1.
3\sqrt{2}-\frac{\frac{\sqrt{2}}{\left(\sqrt{2}\right)^{2}}}{\sqrt{\frac{1\times 3+1}{3}}}\times \frac{\frac{6}{\sqrt{3}}}{1}
Rationalize the denominator of \frac{1}{\sqrt{2}} by multiplying numerator and denominator by \sqrt{2}.
3\sqrt{2}-\frac{\frac{\sqrt{2}}{2}}{\sqrt{\frac{1\times 3+1}{3}}}\times \frac{\frac{6}{\sqrt{3}}}{1}
The square of \sqrt{2} is 2.
3\sqrt{2}-\frac{\frac{\sqrt{2}}{2}}{\sqrt{\frac{3+1}{3}}}\times \frac{\frac{6}{\sqrt{3}}}{1}
Multiply 1 and 3 to get 3.
3\sqrt{2}-\frac{\frac{\sqrt{2}}{2}}{\sqrt{\frac{4}{3}}}\times \frac{\frac{6}{\sqrt{3}}}{1}
Add 3 and 1 to get 4.
3\sqrt{2}-\frac{\frac{\sqrt{2}}{2}}{\frac{\sqrt{4}}{\sqrt{3}}}\times \frac{\frac{6}{\sqrt{3}}}{1}
Rewrite the square root of the division \sqrt{\frac{4}{3}} as the division of square roots \frac{\sqrt{4}}{\sqrt{3}}.
3\sqrt{2}-\frac{\frac{\sqrt{2}}{2}}{\frac{2}{\sqrt{3}}}\times \frac{\frac{6}{\sqrt{3}}}{1}
Calculate the square root of 4 and get 2.
3\sqrt{2}-\frac{\frac{\sqrt{2}}{2}}{\frac{2\sqrt{3}}{\left(\sqrt{3}\right)^{2}}}\times \frac{\frac{6}{\sqrt{3}}}{1}
Rationalize the denominator of \frac{2}{\sqrt{3}} by multiplying numerator and denominator by \sqrt{3}.
3\sqrt{2}-\frac{\frac{\sqrt{2}}{2}}{\frac{2\sqrt{3}}{3}}\times \frac{\frac{6}{\sqrt{3}}}{1}
The square of \sqrt{3} is 3.
3\sqrt{2}-\frac{\sqrt{2}\times 3}{2\times 2\sqrt{3}}\times \frac{\frac{6}{\sqrt{3}}}{1}
Divide \frac{\sqrt{2}}{2} by \frac{2\sqrt{3}}{3} by multiplying \frac{\sqrt{2}}{2} by the reciprocal of \frac{2\sqrt{3}}{3}.
3\sqrt{2}-\frac{\sqrt{2}\times 3\sqrt{3}}{2\times 2\left(\sqrt{3}\right)^{2}}\times \frac{\frac{6}{\sqrt{3}}}{1}
Rationalize the denominator of \frac{\sqrt{2}\times 3}{2\times 2\sqrt{3}} by multiplying numerator and denominator by \sqrt{3}.
3\sqrt{2}-\frac{\sqrt{2}\times 3\sqrt{3}}{2\times 2\times 3}\times \frac{\frac{6}{\sqrt{3}}}{1}
The square of \sqrt{3} is 3.
3\sqrt{2}-\frac{\sqrt{6}\times 3}{2\times 2\times 3}\times \frac{\frac{6}{\sqrt{3}}}{1}
To multiply \sqrt{2} and \sqrt{3}, multiply the numbers under the square root.
3\sqrt{2}-\frac{\sqrt{6}\times 3}{4\times 3}\times \frac{\frac{6}{\sqrt{3}}}{1}
Multiply 2 and 2 to get 4.
3\sqrt{2}-\frac{\sqrt{6}\times 3}{12}\times \frac{\frac{6}{\sqrt{3}}}{1}
Multiply 4 and 3 to get 12.
3\sqrt{2}-\sqrt{6}\times \frac{1}{4}\times \frac{\frac{6}{\sqrt{3}}}{1}
Divide \sqrt{6}\times 3 by 12 to get \sqrt{6}\times \frac{1}{4}.
3\sqrt{2}-\sqrt{6}\times \frac{1}{4}\times \frac{\frac{6\sqrt{3}}{\left(\sqrt{3}\right)^{2}}}{1}
Rationalize the denominator of \frac{6}{\sqrt{3}} by multiplying numerator and denominator by \sqrt{3}.
3\sqrt{2}-\sqrt{6}\times \frac{1}{4}\times \frac{\frac{6\sqrt{3}}{3}}{1}
The square of \sqrt{3} is 3.
3\sqrt{2}-\sqrt{6}\times \frac{1}{4}\times \frac{2\sqrt{3}}{1}
Divide 6\sqrt{3} by 3 to get 2\sqrt{3}.
3\sqrt{2}-\sqrt{6}\times \frac{1}{4}\times 2\sqrt{3}
Anything divided by one gives itself.
3\sqrt{2}-\sqrt{6}\times \frac{2}{4}\sqrt{3}
Multiply \frac{1}{4} and 2 to get \frac{2}{4}.
3\sqrt{2}-\sqrt{6}\times \frac{1}{2}\sqrt{3}
Reduce the fraction \frac{2}{4} to lowest terms by extracting and canceling out 2.
3\sqrt{2}-\sqrt{3}\sqrt{2}\times \frac{1}{2}\sqrt{3}
Factor 6=3\times 2. Rewrite the square root of the product \sqrt{3\times 2} as the product of square roots \sqrt{3}\sqrt{2}.
3\sqrt{2}-3\times \frac{1}{2}\sqrt{2}
Multiply \sqrt{3} and \sqrt{3} to get 3.
3\sqrt{2}-\frac{3}{2}\sqrt{2}
Multiply 3 and \frac{1}{2} to get \frac{3}{2}.
\frac{3}{2}\sqrt{2}
Combine 3\sqrt{2} and -\frac{3}{2}\sqrt{2} to get \frac{3}{2}\sqrt{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}