Evaluate
-18\sqrt{6}\approx -44.09081537
Share
Copied to clipboard
3\sqrt{2}\left(\sqrt{108}-2\sqrt{48}\right)-\sqrt{12}\left(\sqrt{288}-\sqrt{72}\right)
Factor 18=3^{2}\times 2. Rewrite the square root of the product \sqrt{3^{2}\times 2} as the product of square roots \sqrt{3^{2}}\sqrt{2}. Take the square root of 3^{2}.
3\sqrt{2}\left(6\sqrt{3}-2\sqrt{48}\right)-\sqrt{12}\left(\sqrt{288}-\sqrt{72}\right)
Factor 108=6^{2}\times 3. Rewrite the square root of the product \sqrt{6^{2}\times 3} as the product of square roots \sqrt{6^{2}}\sqrt{3}. Take the square root of 6^{2}.
3\sqrt{2}\left(6\sqrt{3}-2\times 4\sqrt{3}\right)-\sqrt{12}\left(\sqrt{288}-\sqrt{72}\right)
Factor 48=4^{2}\times 3. Rewrite the square root of the product \sqrt{4^{2}\times 3} as the product of square roots \sqrt{4^{2}}\sqrt{3}. Take the square root of 4^{2}.
3\sqrt{2}\left(6\sqrt{3}-8\sqrt{3}\right)-\sqrt{12}\left(\sqrt{288}-\sqrt{72}\right)
Multiply -2 and 4 to get -8.
3\sqrt{2}\left(-2\right)\sqrt{3}-\sqrt{12}\left(\sqrt{288}-\sqrt{72}\right)
Combine 6\sqrt{3} and -8\sqrt{3} to get -2\sqrt{3}.
-6\sqrt{2}\sqrt{3}-\sqrt{12}\left(\sqrt{288}-\sqrt{72}\right)
Multiply 3 and -2 to get -6.
-6\sqrt{6}-\sqrt{12}\left(\sqrt{288}-\sqrt{72}\right)
To multiply \sqrt{2} and \sqrt{3}, multiply the numbers under the square root.
-6\sqrt{6}-2\sqrt{3}\left(\sqrt{288}-\sqrt{72}\right)
Factor 12=2^{2}\times 3. Rewrite the square root of the product \sqrt{2^{2}\times 3} as the product of square roots \sqrt{2^{2}}\sqrt{3}. Take the square root of 2^{2}.
-6\sqrt{6}-2\sqrt{3}\left(12\sqrt{2}-\sqrt{72}\right)
Factor 288=12^{2}\times 2. Rewrite the square root of the product \sqrt{12^{2}\times 2} as the product of square roots \sqrt{12^{2}}\sqrt{2}. Take the square root of 12^{2}.
-6\sqrt{6}-2\sqrt{3}\left(12\sqrt{2}-6\sqrt{2}\right)
Factor 72=6^{2}\times 2. Rewrite the square root of the product \sqrt{6^{2}\times 2} as the product of square roots \sqrt{6^{2}}\sqrt{2}. Take the square root of 6^{2}.
-6\sqrt{6}-2\sqrt{3}\times 6\sqrt{2}
Combine 12\sqrt{2} and -6\sqrt{2} to get 6\sqrt{2}.
-6\sqrt{6}-12\sqrt{3}\sqrt{2}
Multiply 2 and 6 to get 12.
-6\sqrt{6}-12\sqrt{6}
To multiply \sqrt{3} and \sqrt{2}, multiply the numbers under the square root.
-18\sqrt{6}
Combine -6\sqrt{6} and -12\sqrt{6} to get -18\sqrt{6}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}