Evaluate
\frac{3\sqrt{21}}{8}\approx 1.718465886
Share
Copied to clipboard
\frac{3\sqrt{2}}{8}\sqrt{\frac{21}{2}}
Factor 18=3^{2}\times 2. Rewrite the square root of the product \sqrt{3^{2}\times 2} as the product of square roots \sqrt{3^{2}}\sqrt{2}. Take the square root of 3^{2}.
\frac{3\sqrt{2}}{8}\times \frac{\sqrt{21}}{\sqrt{2}}
Rewrite the square root of the division \sqrt{\frac{21}{2}} as the division of square roots \frac{\sqrt{21}}{\sqrt{2}}.
\frac{3\sqrt{2}}{8}\times \frac{\sqrt{21}\sqrt{2}}{\left(\sqrt{2}\right)^{2}}
Rationalize the denominator of \frac{\sqrt{21}}{\sqrt{2}} by multiplying numerator and denominator by \sqrt{2}.
\frac{3\sqrt{2}}{8}\times \frac{\sqrt{21}\sqrt{2}}{2}
The square of \sqrt{2} is 2.
\frac{3\sqrt{2}}{8}\times \frac{\sqrt{42}}{2}
To multiply \sqrt{21} and \sqrt{2}, multiply the numbers under the square root.
\frac{3\sqrt{2}\sqrt{42}}{8\times 2}
Multiply \frac{3\sqrt{2}}{8} times \frac{\sqrt{42}}{2} by multiplying numerator times numerator and denominator times denominator.
\frac{3\sqrt{2}\sqrt{2}\sqrt{21}}{8\times 2}
Factor 42=2\times 21. Rewrite the square root of the product \sqrt{2\times 21} as the product of square roots \sqrt{2}\sqrt{21}.
\frac{3\times 2\sqrt{21}}{8\times 2}
Multiply \sqrt{2} and \sqrt{2} to get 2.
\frac{6\sqrt{21}}{8\times 2}
Multiply 3 and 2 to get 6.
\frac{6\sqrt{21}}{16}
Multiply 8 and 2 to get 16.
\frac{3}{8}\sqrt{21}
Divide 6\sqrt{21} by 16 to get \frac{3}{8}\sqrt{21}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}