Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\left(\sqrt{17x-2x^{2}-21}\right)^{2}=\left(\frac{120}{12}-\frac{14x}{12}\right)^{2}
Square both sides of the equation.
17x-2x^{2}-21=\left(\frac{120}{12}-\frac{14x}{12}\right)^{2}
Calculate \sqrt{17x-2x^{2}-21} to the power of 2 and get 17x-2x^{2}-21.
17x-2x^{2}-21=\left(10-\frac{14x}{12}\right)^{2}
Divide 120 by 12 to get 10.
17x-2x^{2}-21=\left(10-\frac{7}{6}x\right)^{2}
Divide 14x by 12 to get \frac{7}{6}x.
17x-2x^{2}-21=100+20\left(-\frac{7}{6}x\right)+\left(-\frac{7}{6}x\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(10-\frac{7}{6}x\right)^{2}.
17x-2x^{2}-21=100+20\left(-\frac{7}{6}x\right)+\left(\frac{7}{6}x\right)^{2}
Calculate -\frac{7}{6}x to the power of 2 and get \left(\frac{7}{6}x\right)^{2}.
17x-2x^{2}-21=100+20\left(-\frac{7}{6}x\right)+\left(\frac{7}{6}\right)^{2}x^{2}
Expand \left(\frac{7}{6}x\right)^{2}.
17x-2x^{2}-21=100+20\left(-\frac{7}{6}x\right)+\frac{49}{36}x^{2}
Calculate \frac{7}{6} to the power of 2 and get \frac{49}{36}.
17x-2x^{2}-21-100=20\left(-\frac{7}{6}x\right)+\frac{49}{36}x^{2}
Subtract 100 from both sides.
17x-2x^{2}-121=20\left(-\frac{7}{6}x\right)+\frac{49}{36}x^{2}
Subtract 100 from -21 to get -121.
17x-2x^{2}-121-20\left(-\frac{7}{6}x\right)=\frac{49}{36}x^{2}
Subtract 20\left(-\frac{7}{6}x\right) from both sides.
17x-2x^{2}-121-20\left(-\frac{7}{6}x\right)-\frac{49}{36}x^{2}=0
Subtract \frac{49}{36}x^{2} from both sides.
17x-2x^{2}-121-20\left(-1\right)\times \frac{7}{6}x-\frac{49}{36}x^{2}=0
Multiply -1 and 20 to get -20.
17x-2x^{2}-121+20\times \frac{7}{6}x-\frac{49}{36}x^{2}=0
Multiply -20 and -1 to get 20.
17x-2x^{2}-121+\frac{70}{3}x-\frac{49}{36}x^{2}=0
Multiply 20 and \frac{7}{6} to get \frac{70}{3}.
\frac{121}{3}x-2x^{2}-121-\frac{49}{36}x^{2}=0
Combine 17x and \frac{70}{3}x to get \frac{121}{3}x.
\frac{121}{3}x-\frac{121}{36}x^{2}-121=0
Combine -2x^{2} and -\frac{49}{36}x^{2} to get -\frac{121}{36}x^{2}.
-\frac{121}{36}x^{2}+\frac{121}{3}x-121=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\frac{121}{3}±\sqrt{\left(\frac{121}{3}\right)^{2}-4\left(-\frac{121}{36}\right)\left(-121\right)}}{2\left(-\frac{121}{36}\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -\frac{121}{36} for a, \frac{121}{3} for b, and -121 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\frac{121}{3}±\sqrt{\frac{14641}{9}-4\left(-\frac{121}{36}\right)\left(-121\right)}}{2\left(-\frac{121}{36}\right)}
Square \frac{121}{3} by squaring both the numerator and the denominator of the fraction.
x=\frac{-\frac{121}{3}±\sqrt{\frac{14641}{9}+\frac{121}{9}\left(-121\right)}}{2\left(-\frac{121}{36}\right)}
Multiply -4 times -\frac{121}{36}.
x=\frac{-\frac{121}{3}±\sqrt{\frac{14641-14641}{9}}}{2\left(-\frac{121}{36}\right)}
Multiply \frac{121}{9} times -121.
x=\frac{-\frac{121}{3}±\sqrt{0}}{2\left(-\frac{121}{36}\right)}
Add \frac{14641}{9} to -\frac{14641}{9} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=-\frac{\frac{121}{3}}{2\left(-\frac{121}{36}\right)}
Take the square root of 0.
x=-\frac{\frac{121}{3}}{-\frac{121}{18}}
Multiply 2 times -\frac{121}{36}.
x=6
Divide -\frac{121}{3} by -\frac{121}{18} by multiplying -\frac{121}{3} by the reciprocal of -\frac{121}{18}.
\sqrt{17\times 6-2\times 6^{2}-21}=\frac{120}{12}-\frac{14\times 6}{12}
Substitute 6 for x in the equation \sqrt{17x-2x^{2}-21}=\frac{120}{12}-\frac{14x}{12}.
3=3
Simplify. The value x=6 satisfies the equation.
x=6
Equation \sqrt{-2x^{2}+17x-21}=-\frac{14x}{12}+10 has a unique solution.