Solve for x
x=2
Graph
Share
Copied to clipboard
\left(\sqrt{17+2x-3x^{2}}\right)^{2}=\left(x+1\right)^{2}
Square both sides of the equation.
17+2x-3x^{2}=\left(x+1\right)^{2}
Calculate \sqrt{17+2x-3x^{2}} to the power of 2 and get 17+2x-3x^{2}.
17+2x-3x^{2}=x^{2}+2x+1
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+1\right)^{2}.
17+2x-3x^{2}-x^{2}=2x+1
Subtract x^{2} from both sides.
17+2x-4x^{2}=2x+1
Combine -3x^{2} and -x^{2} to get -4x^{2}.
17+2x-4x^{2}-2x=1
Subtract 2x from both sides.
17-4x^{2}=1
Combine 2x and -2x to get 0.
-4x^{2}=1-17
Subtract 17 from both sides.
-4x^{2}=-16
Subtract 17 from 1 to get -16.
x^{2}=\frac{-16}{-4}
Divide both sides by -4.
x^{2}=4
Divide -16 by -4 to get 4.
x=2 x=-2
Take the square root of both sides of the equation.
\sqrt{17+2\times 2-3\times 2^{2}}=2+1
Substitute 2 for x in the equation \sqrt{17+2x-3x^{2}}=x+1.
3=3
Simplify. The value x=2 satisfies the equation.
\sqrt{17+2\left(-2\right)-3\left(-2\right)^{2}}=-2+1
Substitute -2 for x in the equation \sqrt{17+2x-3x^{2}}=x+1.
1=-1
Simplify. The value x=-2 does not satisfy the equation because the left and the right hand side have opposite signs.
x=2
Equation \sqrt{17+2x-3x^{2}}=x+1 has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}