Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\left(\sqrt{17+\left(1-x\right)^{2}}\right)^{2}=\left(\sqrt{34+\left(-2-x\right)^{2}}\right)^{2}
Square both sides of the equation.
\left(\sqrt{17+1-2x+x^{2}}\right)^{2}=\left(\sqrt{34+\left(-2-x\right)^{2}}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(1-x\right)^{2}.
\left(\sqrt{18-2x+x^{2}}\right)^{2}=\left(\sqrt{34+\left(-2-x\right)^{2}}\right)^{2}
Add 17 and 1 to get 18.
18-2x+x^{2}=\left(\sqrt{34+\left(-2-x\right)^{2}}\right)^{2}
Calculate \sqrt{18-2x+x^{2}} to the power of 2 and get 18-2x+x^{2}.
18-2x+x^{2}=\left(\sqrt{34+4+4x+x^{2}}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(-2-x\right)^{2}.
18-2x+x^{2}=\left(\sqrt{38+4x+x^{2}}\right)^{2}
Add 34 and 4 to get 38.
18-2x+x^{2}=38+4x+x^{2}
Calculate \sqrt{38+4x+x^{2}} to the power of 2 and get 38+4x+x^{2}.
18-2x+x^{2}-4x=38+x^{2}
Subtract 4x from both sides.
18-6x+x^{2}=38+x^{2}
Combine -2x and -4x to get -6x.
18-6x+x^{2}-x^{2}=38
Subtract x^{2} from both sides.
18-6x=38
Combine x^{2} and -x^{2} to get 0.
-6x=38-18
Subtract 18 from both sides.
-6x=20
Subtract 18 from 38 to get 20.
x=\frac{20}{-6}
Divide both sides by -6.
x=-\frac{10}{3}
Reduce the fraction \frac{20}{-6} to lowest terms by extracting and canceling out 2.
\sqrt{17+\left(1-\left(-\frac{10}{3}\right)\right)^{2}}=\sqrt{34+\left(-2-\left(-\frac{10}{3}\right)\right)^{2}}
Substitute -\frac{10}{3} for x in the equation \sqrt{17+\left(1-x\right)^{2}}=\sqrt{34+\left(-2-x\right)^{2}}.
\frac{1}{3}\times 322^{\frac{1}{2}}=\frac{1}{3}\times 322^{\frac{1}{2}}
Simplify. The value x=-\frac{10}{3} satisfies the equation.
x=-\frac{10}{3}
Equation \sqrt{\left(1-x\right)^{2}+17}=\sqrt{\left(-x-2\right)^{2}+34} has a unique solution.