Solve for t
t = -\frac{33}{16} = -2\frac{1}{16} = -2.0625
Share
Copied to clipboard
\sqrt{16-t}=2+\sqrt{3-t}
Subtract -\sqrt{3-t} from both sides of the equation.
\left(\sqrt{16-t}\right)^{2}=\left(2+\sqrt{3-t}\right)^{2}
Square both sides of the equation.
16-t=\left(2+\sqrt{3-t}\right)^{2}
Calculate \sqrt{16-t} to the power of 2 and get 16-t.
16-t=4+4\sqrt{3-t}+\left(\sqrt{3-t}\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(2+\sqrt{3-t}\right)^{2}.
16-t=4+4\sqrt{3-t}+3-t
Calculate \sqrt{3-t} to the power of 2 and get 3-t.
16-t=7+4\sqrt{3-t}-t
Add 4 and 3 to get 7.
16-t-4\sqrt{3-t}=7-t
Subtract 4\sqrt{3-t} from both sides.
16-t-4\sqrt{3-t}+t=7
Add t to both sides.
16-4\sqrt{3-t}=7
Combine -t and t to get 0.
-4\sqrt{3-t}=7-16
Subtract 16 from both sides.
-4\sqrt{3-t}=-9
Subtract 16 from 7 to get -9.
\sqrt{3-t}=\frac{-9}{-4}
Divide both sides by -4.
\sqrt{3-t}=\frac{9}{4}
Fraction \frac{-9}{-4} can be simplified to \frac{9}{4} by removing the negative sign from both the numerator and the denominator.
-t+3=\frac{81}{16}
Square both sides of the equation.
-t+3-3=\frac{81}{16}-3
Subtract 3 from both sides of the equation.
-t=\frac{81}{16}-3
Subtracting 3 from itself leaves 0.
-t=\frac{33}{16}
Subtract 3 from \frac{81}{16}.
\frac{-t}{-1}=\frac{\frac{33}{16}}{-1}
Divide both sides by -1.
t=\frac{\frac{33}{16}}{-1}
Dividing by -1 undoes the multiplication by -1.
t=-\frac{33}{16}
Divide \frac{33}{16} by -1.
\sqrt{16-\left(-\frac{33}{16}\right)}-\sqrt{3-\left(-\frac{33}{16}\right)}=2
Substitute -\frac{33}{16} for t in the equation \sqrt{16-t}-\sqrt{3-t}=2.
2=2
Simplify. The value t=-\frac{33}{16} satisfies the equation.
t=-\frac{33}{16}
Equation \sqrt{16-t}=\sqrt{3-t}+2 has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}