Evaluate
\frac{8\sqrt{2289}}{109}\approx 3.511449164
Share
Copied to clipboard
\sqrt{\frac{1744}{109}-\frac{400}{109}}
Convert 16 to fraction \frac{1744}{109}.
\sqrt{\frac{1744-400}{109}}
Since \frac{1744}{109} and \frac{400}{109} have the same denominator, subtract them by subtracting their numerators.
\sqrt{\frac{1344}{109}}
Subtract 400 from 1744 to get 1344.
\frac{\sqrt{1344}}{\sqrt{109}}
Rewrite the square root of the division \sqrt{\frac{1344}{109}} as the division of square roots \frac{\sqrt{1344}}{\sqrt{109}}.
\frac{8\sqrt{21}}{\sqrt{109}}
Factor 1344=8^{2}\times 21. Rewrite the square root of the product \sqrt{8^{2}\times 21} as the product of square roots \sqrt{8^{2}}\sqrt{21}. Take the square root of 8^{2}.
\frac{8\sqrt{21}\sqrt{109}}{\left(\sqrt{109}\right)^{2}}
Rationalize the denominator of \frac{8\sqrt{21}}{\sqrt{109}} by multiplying numerator and denominator by \sqrt{109}.
\frac{8\sqrt{21}\sqrt{109}}{109}
The square of \sqrt{109} is 109.
\frac{8\sqrt{2289}}{109}
To multiply \sqrt{21} and \sqrt{109}, multiply the numbers under the square root.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}