Solve for x
x=9
Graph
Share
Copied to clipboard
\left(\sqrt{16+x}\right)^{2}=\left(x-4\right)^{2}
Square both sides of the equation.
16+x=\left(x-4\right)^{2}
Calculate \sqrt{16+x} to the power of 2 and get 16+x.
16+x=x^{2}-8x+16
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-4\right)^{2}.
16+x-x^{2}=-8x+16
Subtract x^{2} from both sides.
16+x-x^{2}+8x=16
Add 8x to both sides.
16+9x-x^{2}=16
Combine x and 8x to get 9x.
16+9x-x^{2}-16=0
Subtract 16 from both sides.
9x-x^{2}=0
Subtract 16 from 16 to get 0.
x\left(9-x\right)=0
Factor out x.
x=0 x=9
To find equation solutions, solve x=0 and 9-x=0.
\sqrt{16+0}=0-4
Substitute 0 for x in the equation \sqrt{16+x}=x-4.
4=-4
Simplify. The value x=0 does not satisfy the equation because the left and the right hand side have opposite signs.
\sqrt{16+9}=9-4
Substitute 9 for x in the equation \sqrt{16+x}=x-4.
5=5
Simplify. The value x=9 satisfies the equation.
x=9
Equation \sqrt{x+16}=x-4 has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}